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ABSTRACT 

 

The objectives of this study were: (i) describe the dynamics of Player Load and 
AcelT and (ii) analyze the neuromuscular load in different anatomical locations 
(scapulae, center of mass, knee and ankle) in an incremental test in treadmill. 
Twenty-three semiprofessional male football players participated voluntarily in 
this research (age: 22.56±4.8 years; body mass: 75.5±5.5 kg; height: 1.79±0.5 
m). Four WIMUPROTM inertial devices were utilized for recording both variables. 
The main results indicated that: (1) exists a nearly perfect relation between both 
variables (r>0.931), (2) the highest values were in knee (PLRT

 = 8.01±2.76; 
AcelT = 2.70±.50) and in ankle (PL = 7.85±2.27; AcelT = 2.87±.49) and (3) a 
great variability was found between athletes. In conclusion, Player Load and 
AcelT are two valid variables to analyze and quantify neuromuscular demands. 

 

KEYWORDS: accelerometry, football, performance, AcelT, Player Load. 

 

RESUMEN 

 

Los objetivos de esta investigación son: (i) describir el comportamiento de las 
variables Player Load y AcelT y (ii) cuantificar la carga neuromuscular en 
diferentes puntos anatómicos (espalda, centro de masas, rodilla y tobillo) durante 
un test incremental en rampa en tapiz rodante. Veintitrés jugadores 
semiprofesionales de fútbol varones participaron voluntariamente en este estudio 
(edad: 22,56±4,8 años; masa corporal: 75,5±5,5 kg; altura: 1,79±0,5 m). Ambas 
variables se registraron empleando 4 dispositivos inerciales WIMU PROTM. Los 
principales resultados indican que: (1) existe una correlación casi perfecta entre 
ambas variables (r=0,931), (2) los mayores valores en ambas variables se han 
encontrado en la rodilla (PL = 8,01±2,76; AcelT = 2,70±0,50) y el tobillo (PL = 
7,85±2,27; AcelT = 2,87±0,49) y (3) existe una amplia variabilidad intersujeto. En 
conclusión, Player Load y AcelT son dos indicadores válidos para el análisis y 
cuantificación de las demandas neuromusculares. 

 

PALABRAS CLAVE: acelerometría, fútbol, rendimiento, AcelT, Player Load.  
 

 

1. INTRODUCTION 

 

Among outdoor team sports, football is one of the most popular, both in the 
number of players and fans. This aspect has caused this sport modality to be 
one of the most studied in scientific literature (Sánchez, Yagüe, Fernández and 
Petisco, 2014). The current problem is that the great complexity of this sport 
has meant that the research carried out has not completely reduced the 
uncertainty surrounding training strategies for improving performance (Aguiar, 
Botelho, Lago, Maças and Sampaio, 2012). 
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In terms of physical and physiological demands, football is considered a team 
sport involving intermittent efforts of high intensity (McMillan, Helgerud, 
Macdonal and Hoff, 2005), in which a large number of short sprints, rapid 
accelerations, decelerations, turns, jumps, kicks and tackles are performed. 
Thus, a full recovery between actions in many cases is not possible (Arnason et 
al, 2004). All these dynamic and unpredictable technical-tactical actions, which 
vary in duration and intensity (Bloomfield, Polman and O'Donoghue, 2007), 
constitute the total internal and external load that players experience (Akubat, 
Barrett and Abt, 2014) and pose an energy challenge for them (Stølen, 
Chamari, Castagna and Wisløff, 2005). Accurate and objective quantification of 
the activities performed by players is fundamental to understanding the physical 
demands of football (Bradley, Di Mascio, Peart and Olsen, 2010, Dwyer and 
Gabbett, 2012, Johnston et al., 2012), since up to 1,350 different actions 
performed by the players have been recorded (Mohr, Krustrup and Bangsbo, 
2003). 

 

In order to improve the preparation methods, it is necessary to expand scientific 
knowledge. Therefore, an objective analysis of the characteristics of the game 
in competitive situations is required (Carling, Williams and Reilly, 2006). This 
possibility is, in large part, enabled by technological development and the 
authorisation of FIFA (International Federation of Association Football), for the 
use of electronic devices in competitive situations (FIFA, 2018). These 
investigations are providing new evidence in the study of physical and tactical 
demands (Castellano and Casamichana, 2014). Being aware of the 
requirements of the competition allows us to control training loads more 
effectively (Grehaigne, Godbout, and Zerai, 2011) and to improve the design of 
training tasks both physically (Gómez-Carmona, Gamonales, Pino-Ortega and 
Ibáñez, 2018) and tactically (Reche-Soto, Cardona, Díaz, Gómez-Carmona and 
Pino-Ortega, 2018b). 

 

Monitoring the loads of team sports players is a common practice in both 
training and competition (Rogalski, Dawson, Heasman and Gabbett, 2013). The 
recording of the parameters is used by sports professionals in order to provide 
an explanation for possible changes in the performance of the athlete or to try to 
reduce the risk of injury, illness or training overload (Halson, 2014). The 
heterogeneous nature of each athlete's response to this training load makes 
their individualised analysis fundamental (Brink, Nederhof, Visscher, Schmikli 
and Lemmink, 2010, Paulson, Mason, Rhodes and Goosey-Tolfrey, 2015). 

 

Considering the nature of the workload, it is classified as internal or external, 
both in the sports and scientific fields (Bartlett, O'Connor, Pitchford, Torres-
Ronda and Robertson, 2017, Costa et al., 2013). Internal load refers to the 
psychological and physiological stress resulting from training-competition, while 
the external load includes the work done by the athlete in terms of distance, 
speed and acceleration (Lambert and Borresen, 2010; McLaren, Weston, 
Smith, Cramb and Portas, 2016; Paulson et al., 2015). In team sports, there is 
greater difficulty in evaluating the internal load (Borresen and Lambert, 2009), 
which has meant that the quantification of external load has undergone greater 
development in recent years. 
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Accelerometers were introduced in the 1950s (Culhane, O'Connor, Lyons, and 
Lyons 2005), and have evolved technologically to offer sufficient quality and 
reliability with a low production cost. They allow us to quantitatively evaluate 
human movement with a fully portable device. (Lemoyne, Coroian, Mastroianni 
and Grundfest, 2008). The multifunctional conception of inertial devices (Inertial 
measurement units, IMUs) is increasingly used in the sports context. These 
devices include different sensors such as accelerometers, gyroscopes, 
magnetometers, GNSS, etc. (Akenhead and Nassis, 2016; Boyd, Ball and 
Aughey, 2013; Gabbett, 2015). 

 

One of the most commonly used load indicators, based on the accelerometer 
signal, is the PlayerLoadTM (PL) variable (Barrett et al., 2016, Bradley et al., 
2010, Dalen, Jørgen, Gertjan, Havard and Ulrik, 2016; Reche-Soto et al., 
2019a), also known as Body Load (Gomez-Piriz, Jiménez-Reyes and Ruiz-
Ruiz, 2011), depending on the inertial device used. This indicator is the 
combination of the accelerations produced in the three anatomical planes of 
movement, producing an estimate of the total load (Cummins, Orr, O'Connor 
and West, 2013), expressed in arbitrary units (Barrett et al., 2016). The PL has 
been proved to be a reliable and valid indicator (Hollville, Couturier, Guilhem 
and Rabita, 2016), which has a high correlation with physiological variables 
such as heart rate and VO2max (Barrett et al., 2016), and subjective scales of 
perception of effort (Casamichana, Castellano, Calleja-Gonzalez, San Román 
and Castagna, 2013). In addition, this variable has obtained high inter- and 
intra-device test-retest reliability in cyclical (Barrett et al., 2016) and acyclic 
activities (Boyd et al., 2013) as well as in multidirectional tasks (ICC = 0.806-
0.949) (Barreira et al., 2017). 

 

For all of the above, the objectives of this study were: (i) to describe the 
dynamics of the neuromuscular load variables Player Load and AcelT in an 
incremental treadmill ramp test and (ii) to quantify the neuromuscular load at 
different anatomical points (back, lumbar area, knee and ankle) during this test. 
 

2. METHOD 

 

2.1. PARTICIPANTS 

 

Twenty-three semi-professional football players from a national football league 
(Third Division, Group XIII) voluntarily participated in this study (Age: 22.56 ± 
4.8 years, Weight: 75.5 ± 5.5 kg, Height: 1.79 ± 0.5 metres). All participants had 
to meet the following requirements: (i) have more than two years of experience 
in football practice at a national level, (ii) present more than one year of 
experience with advanced technological monitoring in both training and official 
matches and (iii) not present any musculoskeletal injury or health problems that 
prevented their evaluation. 

 

The study was approved by the ethics committee of the University of Murcia 
before the start (registration number 2061/2018), in accordance with the code of 
ethics of the World Medical Association (Declaration of Helsinki, 2013). 
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Participants were previously informed of the details of the investigation and its 
possible risks and benefits, and gave their informed consent. 
 

2.2. VARIABLES 

 

 Player Load (PL): Accelerometer-derived measurements of total body load in 
its 3 axes (vertical, anterior-posterior and medial-lateral) have been used to 
evaluate the neuromuscular load in different athletes (Gómez-Carmona, 
Pino-Ortega, Sánchez-Ureña, Ibáñez, y Rojas-Valverde, 2019b; Reche-Soto 
et al., 2019b). It is represented in arbitrary units (a.u.) and is calculated from 
the following equation at a 100 Hz sampling frequency where:  PLn is the 
player load calculated in the current instant; n is the current instant in time; n-
1 is the previous instant in time; Xn, Yn and Zn are the values of Body Load for 
each axis of movement in the current instant in time; Xn-1, Yn-1 and Zn-1 are the 
values of Body Load for each axis of movement in the previous instant in 
time.   
 

𝑃𝐿𝑛 = √
(𝑋𝑛 − 𝑋𝑛−1)2 + (𝑌𝑛 − 𝑌𝑛−1)2 +  (𝑍𝑛 − 𝑍𝑛−1)2

100
  

 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑃𝐿 = ∑ 𝑃𝐿𝑛  x   0,01 

𝑚

𝑛=0

 

 

 AcelT: it is the magnitude of acceleration or resulting vector (Waldron, Twist, 
Highton, Worsfold, and Daniels, 2011) identified as the vector sum of the 
total acceleration recorded by the accelerometer, which is the result of gravity 
(y axis), changes in horizontal movement (x axis) and forces related to the 
rotation movements (z-axis) of a body segment or object to which the 
accelerometer is attached (O'Donovan, Kamnik, O'Keeffe and Lyons, 2007, 
Kunze, Bahle, Lukowicz and Partridge, 2010). It is calculated from the 
following formula: 

 

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐴𝑐𝑒𝑙𝑇)  =  √𝑥2 + 𝑦2 + 𝑧2 

 

2.3. INSTRUMENTS 

 

Anthropometric characteristics 

 

The height of the subjects was measured with a wall-mounted height meter 
during full inhalation (SECA, Hamburg, Germany), and body weight was 
obtained using a body composition monitor, model BC-601 (TANITA, Tokyo, 
Japan). 

 

Neuromuscular load 

 

Both variables were recorded using 4 WIMUPROTM inertial devices (RealTrack 
Systems, Almeria, Spain), which contain four triaxle accelerometers that detect 
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and measure movement using an electromechanical system with a sampling 
frequency from 10 to 1,000 Hz. The motion detection range is ± 16 g, ± 16 g, ± 
32 g and ± 400 g. Each device has its own 1 GHz microprocessor, 8 GB of 
internal memory and high-speed USB output to record, store and download 
data. Each device has an internal battery with a duration of more than 4 hours, 
weighing 70 g and measuring 81 × 45 × 16 mm. In this study, the 
accelerometers were configured to record the research variables with a 
sampling frequency of 1,000 Hz. 

 

The devices were placed on the: (i) back (C6, between the scapulae), (ii) 
lumbar region (L3, at the height of the centre of mass) (McGregor, Armstrong, 
Yaggie, Parshad and Bollt, 2011), (iii) knee (5 cm above the crack of the 
kneecap) and (iv) ankle (5 cm above the lateral malleolus). The devices were 
placed on the outside part of the right leg in all subjects, both on the ankle and 
knee. 

 

Prior to their placement, the devices were calibrated and synchronised. Thanks 
to this process, the accelerometers eliminate the 4 sources of error that may 
occur: displacement error, scaling error, orthogonal errors and random error 
(Wang, Liu and Fan, 2006). The device calibration process was carried out 
following the manufacturer's recommendations in the auto-start process. To 
ensure proper functioning, three aspects had to be met: (a) leaving the device 
immobile for 30 seconds, (b) on a flat surface and (c) without close contact with 
magnetic devices (Bastida-Castillo, Gómez-Carmona, Reche, Granero-Gil and 
Pino-Ortega, 2018). Following this procedure, the accelerometers in this device 
have obtained very high reliability values in static and dynamic tests in different 
anatomical locations (Gómez-Carmona, Bastida-Castillo, García-Rubio, Ibáñez 
and Pino-Ortega, 2019a). 

 

Figure 1 shows the location of the inertial devices, which were placed as 
follows: (i) back, using a specific harness anatomically adjusted to the subject 
and (ii) L3, ankle and knee, using an extendable band that was attached to the 
subject with Velcro and finally sealed with adhesive tape in order to reinforce 
the fastening. 

 

 
Figure 1. Location of the inertial devices in the study participants. 
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2.4. PROCEDURE 
 

The study was carried over 2 weeks, with a total of 3 sessions. In the first 
session, anthropometric measurements were recorded and both the protocol 
and the objective of the study were explained. The second session consisted of 
familiarisation with the test and running using technological monitoring. In the 
third session, the incremental ramp test was performed on a treadmill. The 
starting speed was 8 km / h. From the beginning, a continuous speed increase 
of 0.1 km / h was made every 12 seconds (1 km / h every 2 minutes). The test 
ended when the subject could not maintain the speed. 

 

All sessions began at 9:00 am and the subjects had to meet the following 
requirements: (i) suppression of alcohol and caffeine intake 24 hours before 
each session and (ii) not performing high intensity physical activity the 48 hours 
prior to the completion of the protocol; so that none of these factors interfered in 
the investigation (Billat, 2002, Spriet, 2014). 

 

Before carrying out each of the protocols, a standardised warm-up of 5 minutes 
of continuous running was performed at 65% of HRmax, which was monitored 
and controlled in real time by sending data from the WIMUPROTM inertial 
devices (RealTrack Systems, Almeria, Spain) using Wi-Fi technology to a 
computer which had the software SPROTM (RealTrack Systems, Almeria, Spain) 
to check the perfect functioning of the devices (Bastida-Castillo, Gómez-
Carmona and Pino-Ortega, 2016). At the end of the protocol, subjects 
performed 5 minutes of continuous running at 55% of the HRmax. 

 

3. STATISTICAL ANALYSIS 

 

The Shapiro-Wilk test was used to determine the distribution of the data, and for 
the homoscedasticity the Levene test was applied (Field, 2013). The analysis 
showed a normal distribution, so parametric tests were used. First a descriptive 
analysis was made showing the results in terms of average and standard 
deviation. A linear regression was performed to determine the cause-effect 
relationship between the two neuromuscular load variables Player Load and 
AcelT depending on the location of the inertial devices, the subjects involved 
and the running speed. The statistical tests were performed using the software 
SPSS 24.0 (SPSS Inc., Chicago IL, USA). The statistical significance was 
established with the value of p < 0.05. 
 

4. RESULTS 
 

Table 1 presents the descriptive analysis of the neuromuscular load variables 
AcelT and Player Load in the different locations and according to the different 
running speeds. Higher values are found in both variables the higher the 
running speed. In addition, values also increase as the location is closer to the 
point of contact of the foot with the ground. 
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Table 1. Descriptive analysis of neuromuscular load variables. 

Speed 

(km/h) 

Player Load
 

AcelT 

Back L3 Knee Ankle Back L3 Knee Ankle 

M SD M SD M SD M SD M SD M SD M SD M SD 

8 2.26 0.35 2.37 0.42 4.90 0.63 4.81 0.82 1.19 0.04 1.30 0.06 2.05 0.09 2.13 0.10 

8,5 2.34 0.40 2.51 0.43 5.26 0.67 5.12 0.67 1.20 0.04 1.32 0.06 2.14 0.09 2.22 0.10 

9 2.46 0.43 2.66 0.42 5.65 0.70 5.60 0.70 1.22 0.04 1.34 0.06 2.22 0.09 2.33 0.09 

9,5 2.51 0.44 2.80 0.44 6.02 0.77 5.97 0.68 1.23 0.04 1.36 0.07 2.30 0.10 2.43 0.10 

10 2.60 0.44 2.94 0.46 6.45 0.82 6.38 0.73 1.25 0.04 1.38 0.07 2.39 0.10 2.53 0.09 

10,5 2.70 0.46 3.08 0.47 6.80 0.90 6.74 0.75 1.26 0.04 1.40 0.08 2.46 0.11 2.62 0.10 

11 2.80 0.45 3.22 0.46 7.44 1.55 7.08 0.83 1.27 0.04 1.42 0.08 2.59 0.22 2.72 0.10 

11,5 2.91 0.44 3.34 0.45 7.91 1.79 7.57 0.83 1.28 0.04 1.44 0.08 2.68 0.25 2.82 0.10 

12 3.00 0.47 3.49 0.44 8.32 1.93 7.96 0.83 1.29 0.04 1.45 0.08 2.76 0.27 2.92 0.10 

12,5 3.11 0.46 3.63 0.47 8.76 2.08 8.46 0.84 1.30 0.04 1.47 0.09 2.85 0.30 3.04 0.11 

13 3.21 0.48 3.72 0.46 9.25 2.13 8.93 0.93 1.32 0.04 1.48 0.09 2.94 0.31 3.15 0.12 

13,5 3.30 0.46 3.87 0.47 9.78 2.29 9.46 1.04 1.33 0.04 1.50 0.08 3.05 0.36 3.25 0.13 

14 3.47 0.51 3.93 0.43 10.53 3.00 9.99 1.06 1.34 0.04 1.51 0.08 3.22 0.53 3.36 0.12 

14,5 3.55 0.49 4.09 0.44 11.40 4.00 10.54 1.16 1.36 0.05 1.52 0.08 3.37 0.67 3.47 0.12 

15 3.56 0.47 4.16 0.46 10.82 1.79 11.23 1.26 1.37 0.05 1.54 0.09 3.24 0.12 3.61 0.12 

15,5 3.75 0.44 4.40 0.52 10.93 1.41 11.79 1.21 1.39 0.06 1.57 0.09 3.31 0.11 3.72 0.14 

16 3.73 0.30 4.58 0.27 11.68 0.78 12.68 1.06 1.37 0.03 1.59 0.12 3.44 0.04 3.94 0.07 

Total 2.94 0.63 3.37 0.75 8.01 2.76 7.85 2.27 1.28 0.07 1.43 0.11 2.70 0.50 2.87 0.49 

Nota. M: mean; SD: Standard deviation. 

 

Figure 2 shows the regression analysis between the variables Player Load and AcelT 
during the incremental running test in all the subjects analysed. There are different 
dynamics between the upper body load and the lower body load along the speed 
spectrum. As a whole, there is a nearly perfect correlation between both 
neuromuscular load variables (R2 = 0.931). 

 

 
Figure 2. Graphical representation of the relationship between the variables Player Load and 

AcelT during the progressive incremental test on the treadmill. 
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Table 2 shows the linear regression between the neuromuscular load variables 
AcelT and Player Load in each of the subjects analysed in the different 
locations. We find an inter-subject variability in the location analysis. In addition, 
we find the best relationships in the ankle (R2 = 0.956) and the knee (R2 = 
0.916) both individually and globally. Both locations belong to the 
neuromuscular load dynamics of the lower body. 

 
Table 2. Linear regression between the variables of neuromuscular load Player Load and 
AcelT in the different locations analysed in each of the study participants. 

Participants 
Locations 

Ankle Knee L3 Back 

1 0.997 0.958 0.998 0.973 

2 0.982 0.996 0.980 0.970 

3 0.992 0.993 0.992 0.947 

4 0.992 0.993 0.992 0.947 

5 0.990 0.998 0.980 0.941 

6 0.997 0.999 0.990 0.964 

7 0.996 0.984 0.992 0.967 

8 0.993 0.990 0.973 0.989 

9 0.996 0.996 0.988 0.956 

10 0.996 0.998 0.984 0.923 

11 0.987 0.996 0.954 0.988 

12 0.998 0.993 0.987 0.976 

13 0.993 0.979 0.997 0.987 

14 0.998 0.999 0.997 0.988 

15 0.990 0.998 0.997 0.986 

16 0.992 0.997 0.956 0.955 

17 0.995 0.988 0.956 0.952 

18 0.987 0.987 0.949 0.990 

19 0.990 0.994 0.962 0.978 

20 0.989 0.998 0.956 0.987 

21 0.996 0.992 0.993 0.952 

22 0.995 0.998 0.998 0.887 

23 0.995 0.996 0.980 0.973 

Total 0.956 0.916 0.765 0.713 
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Finally, Table 3 presents a relational analysis of the neuromuscular load 
variables Player Load and AcelT in the different locations according to the 
running speed. Better relationships are found when the speeds are higher in the 
aforementioned locations, ankle and knee. 
 

Table 3. Linear regression between the neuromuscular load variables Player Load and AcelT 
in the different locations analysed according to the running speed. 

Speed 
Locations 

Total 
Ankle Knee L3 Back 

8 0.806 0.628 0.520 0.139 0.879 

8.5 0.606 0.646 0.514 0.276 0.900 

9 0.590 0.577 0.531 0.331 0.910 

9.5 0.545 0.478 0.555 0.361 0.913 

10 0.535 0.440 0.551 0.424 0.916 

10.5 0.549 0.407 0.559 0.429 0.916 

11 0.765 0.789 0.513 0.469 0.906 

11.5 0.789 0.834 0.524 0.421 0.909 

12 0.847 0.834 0.543 0.394 0.908 

12.5 0.820 0.847 0.563 0.464 0.912 

13 0.817 0.841 0.566 0.550 0.915 

13.5 0.817 0.835 0.462 0.462 0.921 

14 0.907 0.904 0.420 0.546 0.935 

14.5 0.928 0.920 0.396 0.495 0.924 

15 0.786 0.676 0.379 0.494 0.928 

15.5 0.780 0.608 0.541 0.512 0.933 

16 0.781 0.897 0.567 0.549 0.972 

 

 

5. DISCUSSION 

 

The objectives of this study were: (i) to describe the dynamics of the 
neuromuscular load variables Player Load and AcelT and (ii) to quantify such 
demands in different anatomical locations along the speed spectrum during an 
incremental treadmill ramp test. 

 

In the descriptive analysis performed, the highest values in the Player Load and 
AcelT variables were found in the knee (PL = 8.01 ± 2.76, AcelT = 2.70 ± 0.50) 
and the ankle (PL = 7, 85 ± 2.27, AcelT = 2.87 ± 0.49), the values in both 
variables increasing as the running speed increased. The contribution of the 
load from individual planes can also be influenced by the anatomical position of 
the accelerometer. Barrett, Midgley and Lovell (2014) find that the values of 
both variables in the locations which are closest to the point of contact of the 
foot with the ground increase as the speed increases. However, it is generally 
accepted that the centre of mass (lumbar area, L3) (McGregor et al., 2011) is 
the optimal anatomical location for the placement of these devices (Halsey, 
Shepard and Wilson, 2011; McGregor, Busa, Yaggie and Bollt, 2009), although, 
as in our case, there are exceptions in the literature (Boyd et al., 2013, Scott, 
Black, Quinn and Coutts, 2013, Cormack et al., 2013). Specifically, in the study 
conducted by Barrett et al., (2014) where the registered PL was slightly higher 
in L3 than in the back. 
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As for the regression analysis performed between the accelerometric load 
variables Player Load and AcelT, it is shown that both variables have a nearly 
perfect correlation (r> 0.931). Therefore, both variables are valid for the 
quantification and analysis of neuromuscular demands. The PL has been 
accepted as a valid indicator to interpret the amount of external load 
experienced by a player in different sports such as football (Barreira et al., 
2017, Casamichana et al., 2013, Scott et al., 2013), Australian football (Boyd et 
al., 2013; Gastin, McLean, Spittle and Breed, 2013; Scott et al., 2013) and 
linear running (Barrett et al., 2014). Previous research has shown significant 
and strong relationships between neuromuscular load measurements and the 
ratio of injuries in rugby players (Gabbett, 2004a, Gabbett 2004b), so both 
variables are put forward as indicators of injury risk in team sports. The PL also 
presents a high relation with respect to the Edwards index (r = 0.70), the 
subjective perception of effort (PSE) (r = 0.74) and with the volume of 
movement through the total distance travelled variable (r = 0.70) (Casamichana 
et al., 2013). Scott et al. (2013) also found a strong relationship between the PL 
variable and the Edwards index (r = 0.80). In short, the studies show that the PL 
is a valid indicator to quantify the demands in football, being acceptable for use 
in competition (CV = 1.9%) (Boyd et al., 2013). 

 

The linear regression between the neuromuscular load variables AcelT and 
Player Load in each of the subjects analysed in the different locations shows an 
inter-subject variability in the location analysis. In addition, we found the best 
relationships in the ankle (R2 = 0,956) and knee (R2 = 0,916), both individually 
and globally. Such relationships are higher at a higher running speed. The 
results obtained are linked to those found in the research conducted by 
Nedergaard et al. (2017) where there is a low correlation between the 
acceleration of the centre of mass (L3) and the rest of locations (tibia, knee and 
scapula) concluding that the acceleration of the whole body cannot be detected 
by placing an accelerometer in the centre of mass due to the complexity of 
sports actions. Therefore, to achieve the best accuracy, the ideal location would 
be the ankle / tibia because it is the first joint point that receives more directly 
the forces that the subject exerts against the ground while running, obtaining a 
high validity with respect to force platforms (Raper et al., 2018) and detecting 
differences in impact depending on the type of footwear (Sinclair and Sant, 
2017). 

 

6. LIMITATIONS OF THE STUDY 

 

Different limitations must be taken into account when interpreting the results 
obtained in this investigation. Firstly, the number of participants is small (n = 
23), which may influence the statistical power of the results analysed. Secondly, 
the participants analysed were national level male football players, so the 
results could not be extrapolated to other study populations. Finally, only four 
inertial devices at a specific sampling frequency were used for the data 
collection. The components of the inertial devices, the calibration of the sensors 
and the sampling frequency can affect the results obtained. Therefore, the 
recording of the data through the inertial devices was carried out following the 
manufacturer's recommendations. 
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7. CONCLUSIONS 

 

Player Load and the AcelT are two valid indicators for the analysis and 
quantification of neuromuscular demands. Therefore, both indicators can be 
used interchangeably to quantify neuromuscular load in training and 
competition. The lower limb supports greater neuromuscular load with respect 
to the upper limb, therefore, it is necessary to analyse its dynamics to adapt 
training loads and recovery protocols. Finally, there is wide inter-subject 
variability, which is why an individualised load analysis is recommended for 
greater specificity with the aim of improving sports performance. 
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