Yanci, J.; Los Arcos, A.; Salinero, J.J.; Plana, C.; Gil, E. y Grande, I. (2015). Efectos producidos por diferentes programas de interferencia contextual en la agilidad / Effects of different contextual interference programs in agility. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte vol. 15 (59) pp. 405-418. Http://cdeporte.rediris.es/revista/revista59/artefectos592.htm

DOI: http://dx.doi.org/10.15366/rimcafd2015.59.001

ORIGINAL

EFECTOS PRODUCIDOS POR DIFERENTES PROGRAMAS DE INTERFERENCIA CONTEXTUAL EN LA AGILIDAD

EFFECTS OF DIFFERENT CONTEXTUAL INTERFERENCE PROGRAMS IN AGILITY

Yanci, J.¹; Los Arcos, A.²; Salinero, J.J.³; Plana, C.⁴; Gil, E.⁵ y Grande, I.⁶

- ¹ Facultad de Ciencias de la Actividad Física y del Deporte, Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz, España, javier.yanci@ehu.es
- ² Escuela de Magisterio, Universidad del país Vasco, UPV/EHU, Vitoria-Gasteiz, España, asier.losarcos@gmail.com
- ³ Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Camilo José Cela, Madrid, España, <u>jisalinero@ucjc.edu</u>
- ⁴ Facultad de Ciencias de la Actividad Física y del Deporte, Universidad de Zaragoza. Huesca, España, <u>carplana@unizar.es</u>
- ⁵ Departamento de Educación Física CPEIP Aoitz, Departamento de Educación del Gobierno de Navarra, Aoitz, España, <u>enekogilmonreal@yahoo.es</u>
- ⁶ Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica, Madrid, España. <u>ignacio.grande@upm.es</u>

Código UNESCO / UNESCO code: 5899 Otras especialidades (Educación Física y Deporte) / Other specialities (Physical Education and Sports) **Clasificación del Consejo de Europa / Council of Europe Classification:** 4. Educación Física y deporte comparado / Physical Education and Compared Sports. 5. Didáctica y metodología / Didactic and Methodology.

Recibido 30 de abril de 2012 **Received** April 30, 2012 **Aceptado** 11 de mayo de 2013 **Accepted** May 11, 2013

RESUMEN

En este estudio participaron 76 alumnos de 9-10 años de edad de un colegio público de educación primaria (44 chicos y 32 chicas). Los participantes fueron randomizados en función del resultado del pretest en cuatro grupos: interferencia contextual baja (ICB, n=19), interferencia contextual moderada (ICM, n=19) interferencia contextual alta (ICA, n=19) y Grupo Control (GC, n=19). El objetivo de este estudio fue conocer que método de entrenamiento de la agilidad en función de la interferencia contextual baja, moderada o alta (ICB, ICM e ICA) es más efectivo en escolares de cuarto curso de educación primaria, con

el fin de dilucidar qué método de desarrollo de esta capacidad resultó el idóneo en esta etapa de escolarización. La agilidad fue evaluada mediante el test MAT2. Salvo en el grupo control (CG), se obtuvieron diferencias significativas en la agilidad (test MAT2), en todos los grupos después de un programa de intervención de 4 semanas de duración en alumnos del cuarto curso de primaria. Estas diferencias han sido superiores en el grupo de ICM (p<0,01, ES=1,12). Se encontraron diferencias significativas (p<0,05, ES=0,79) en el postest entre el grupo de ICM e ICB.

PALABRAS CLAVE: test, MAT, cambio de dirección, educación, desarrollo motor.

ABSTRACT

This study involved 76 students from 9-10 years old in a public elementary school (44 boys and 32 girls). Participants were randomized to the outcome of the pretest into four groups: low contextual interference (ICB, n=19), moderate contextual interference (ICM, n=19) high contextual interference (ICA, n=19) and Control Group (GC, n=19). The aim of this study was to determine which method of agility training (ICB, ICM or ICA) is more effective in primary school children (9-10 years), in order to figure out what method of development of this capacity was the appropriate at this stage of schooling. The agility was evaluated by MAT2 test. Except in the control group (GC), there were significant differences in agility (MAT2 test) in all groups (ICB, ICM and ICA) after an intervention program of 4-week fourth-year students of elementary school. These differences have been higher in the ICM group (p<0.01, ES=1.12). We found significant differences (p<0.05, ES=0.79) in the posttest between the ICM and ICB group.

KEY WORDS: test, MAT, change direction, education, motor development.

INTRODUCCIÓN

El desarrollo motor presenta una relación muy estrecha con el propio desarrollo general de los niños y puede resultar determinante en sus capacidades intelectuales, sociales y emocionales (Zivcic y col. 2008). Factores como la ausencia de actividad física en forma de juego o la falta de experiencias y oportunidades motoras en diferentes actividades pueden disminuir el proceso de desarrollo madurativo del niño (Brown y col. 2006, Finn y col. 2002). En este sentido uno de los objetivos asociados a la asignatura de educación física, en la etapa de educación primaria, debe ser el de dotar a los alumnos de los medios para lograr un desarrollo adecuado de sus habilidades motoras, con el fin de posibilitar su adecuada actuación motriz frente a las demandas de su futura vida cotidiana y frente a las diferentes actividades físicas y deportivas en las que pueda participar.

En la última década se han realizado múltiples estudios y se han desarrollado diferentes teorías que focalizan su atención en la necesidad que

tienen los niños de realizar ejercicio físico (Jackson y col. 2003, Kostic y col. 2003, Melody y col. 2007, Pate y col. 2004, Sanders, 1993) y la influencia que tiene la práctica de actividad física en niños tanto de educación infantil (Jackson y col. 2003, Melody y col. 2007, Pate y col. 2004, Sanders, 1993) como en educación primaria (Lam y col. 2001, McKenzie y col. 2002, Oxyzoglou y col. 2009, Singh y col. 1987). De la misma forma, se han publicado múltiples trabajos que estudian las habilidades motoras en deportistas niños y jóvenes (Erceg y col. 2008, Meylan y Malatesta, 2009, Oxyzoglou y col. 2009, Reilly y col. 2000) así como en diferentes ámbitos culturales y puntos geográficos (Amusa y col. 2010, McKenzie y col. 2002, Singh y col. 1987).

Realizar una práctica físico-deportiva adecuada en cuanto a cantidad y calidad es muy importante con los niños y jóvenes. Tal es la influencia que tiene esta práctica que hay autores que afirman que hasta los siete años de edad los niños aprenden los tipos básicos de actividades motoras, tales como la coordinación, la velocidad, la flexibilidad, el equilibrio y la precisión entre otros y que después de esta etapa, es complicado compensar estas carencias (Zivcic y col. 2008). Dentro de estas habilidades a desarrollar, destaca la agilidad por su estrecha relación con diferentes habilidades como la coordinación y el control motor, además de depender de forma substancial de un gran número de factores como la movilidad articular, la potencia, la flexibilidad, la fuerza, la velocidad y las estructuras biomecánicas utilizadas (Sporis y col. 2010).

La agilidad es un concepto complejo y con diferentes acepciones. La más simple identifica la agilidad con la habilidad de realizar cambios de dirección (Sporis y col. 2010). Miller y col. (2006) consideran que la agilidad es una habilidad que permite realizar cambios de dirección (COD) y paradas, desarrollando diferentes movimientos de manera eficiente y rápida (Miller y col. 2006). Sea definida de una u otra manera, la variedad de aspectos que se integran en esta habilidad hace que su desarrollo posea una gran importancia en las etapas de crecimiento y maduración del niño. Para lograr el desarrollo óptimo de esta habilidad hay que establecer las características específicas de los estímulos y de las actividades que utilicemos para su entrenamiento. De esta forma, una de las principales cuestiones que se les presenta a los docentes a la hora de abordar la enseñanza de los contenidos específicos de educación física es cuál es la manera más eficaz de hacerlo (Robles-Rodríguez y col. 2011). En este sentido debemos indicar que no está claro ni el tipo ni las características específicas que tienen que tener estos estímulos de entrenamiento aplicados a los niños de diferentes edades en la etapa de educación primaria para lograr su óptimo desarrollo motor en general y la mejora adecuada de sus diferentes capacidades en particular.

La interferencia contextual (IC) hace referencia a la cantidad relativa de interferencia creada al integrar dos o más actividades a un aspecto particular de una determinada tarea (Landin y Herbert, 1997). Holmberg (2009), define los programas de IC baja, como aquellos en los que las habilidades se practican realizando una única acción. Los programas de IC moderada corresponderían a aquellos en los que se producen varias acciones. Un programa de IC elevada o alta incluye la práctica simultánea de múltiples acciones de movimiento además de aumentar la incertidumbre de un estímulo-respuesta (Holmberg, 2009). Varios

autores afirman que la agilidad es una habilidad motora que puede mejorarse a través de una adecuada práctica progresiva (Brughelli y col. 2008, Holmberg, 2009, Jeffreys, 2006, Little y Williams, 2005, Schmidt y Wrisberg, 2004). Sin embargo, resulta necesario definir qué programas de educación física son más efectivos y que efectos producen en las diferentes etapas de educación primaria.

De esta forma, los objetivos de este estudio fueron analizar las modificaciones producidas en la capacidad de cambiar de dirección (COD) tras aplicarse tres programas diferentes de trabajo de agilidad (Interferencia Contextual Baja, ICB; Interferencia Contextual Moderada, ICM; Interferencia Contextual Alta, ICA) y determinar cuál es más efectivo en la población de escolares de educación primaria (9-10 años).

MÉTODO

Participantes

En este estudio participaron 76 alumnos de cuarto curso de un colegio público de educación primaria (44 chicos y 32 chicas). La edad de los participantes fue determinada en función de los datos obtenidos en el registro oficial del colegio al que pertenecían, en función de la partida de nacimiento individual. Las clases fueron randomizadas en función del resultado obtenido en el test inicial y divididos en cuatro grupos: Grupo ICB: Interferencia contextual baja (n=19), Grupo ICM: Interferencia contextual moderada (n=19) Grupo ICA: Interferencia contextual alta (n=19) y Grupo GC: Grupo Control (n=19). La media de las características antropométricas, peso, edad, altura e índice de masa corporal de los participantes se encuentra representada en la tabla 1.

Tabla 1. Características físicas y antropométricas de los grupos de interferencia contextual (IC) baja (ICB), moderada (ICM), alta (ICA) grupo control (CG) y del conjunto.

	ICB (n=19)		ICM (n=19)		ICA (n=19)		GC (n=19)		TOTAL (n=76)	
	Media	DS	Media	DS	Media	DS	Media	DS	Media	DS
Edad (años)	9,4	0,5	9,6	0,4	9,5	0,4	9,4	0,5	9,5	0,8
Talla (cm)	140,8	6,14	143,4	4,28	142,8	5,27	142,5	4,98	141,7	5,31
Masa (kg)	33,40	3,56	32,42	5,68	33,46	5,32	33,14	4,76	33,67	5,12
IMC (kg.m ⁻²)	16,86	1,54	15,76	1,93	16,41	1,73	15,87	1,65	16,01	1,74

DS= desviación estándar; ICB=interferencia contextual baja; ICM=interferencia contextual moderada; ICA=interferencia contextual alta; GC=grupo control; IMC=índice de masa corporal

Los criterios de inclusión para la participación en la investigación fueron los de estar matriculado en el colegio público donde se realizó el estudio, pertenecer al cuarto curso de la enseñanza primaria obligatoria, no estar lesionado en el momento de realización de la investigación, no haber repetido curso escolar, haber realizado todo el programa de intervención al completo, aportar el formulario de consentimiento informado. El ratio de participación

respecto del total de alumnos de cuarto curso pertenecientes al centro educativo donde se realizó el estudio fue del 92,68%. Los datos de un total de 6 alumnos fueron excluidos por no cumplir los criterios de inclusión, de los cuales 1 alumno estaba lesionado, 2 alumnos eran repetidores, 2 alumnos no realizaron todo el programa por falta de asistencia a las sesiones de educación física durante el periodo de investigación y 1 alumno no aportó firmado el formulario de consentimiento, obligatorio para participar en el estudio.

Todos los participantes y sus familias fueron informados de la naturaleza del estudio y conocían los objetivos de la investigación. Aceptaron voluntariamente formar parte de ella y fueron informados de los procedimientos experimentales que se llevarían a cabo. En cualquier momento de la investigación se les dio la opción de retirarse de la misma. Se obtuvo la autorización de las familias antes de llevarlo a cabo. La investigación fue aprobada por los órganos de dirección del colegio correspondientes. Todos los procedimientos siguieron las pautas marcadas por la Declaración de Helsinki (2008), la Ley Orgánica de Protección de Datos de Carácter Personal (LOPD) y cumplieron las normas establecidas por el comité ético local.

Procedimiento

La investigación se realizó en las horas correspondientes a las sesiones de educación física, al inicio del tercer trimestre, con una frecuencia de dos sesiones semanales durante siete semanas, obteniendo un número total de 14 sesiones. El estudio requirió la realización de un test inicial (Pre) de agilidad (MAT2), en la semana anterior al inicio del programa de intervención. En las sesiones previas al Pretest los alumnos recibieron explicaciones gráficas a través de un video y explicaciones directas por parte de los investigadores de la realización correcta del test. Se realizaron 3 sesiones prácticas y una teórica donde todos los alumnos conocieron, experimentaron y realizaron el test de agilidad en varias ocasiones para familiarizarse con la acción motriz y eliminar los efectos de aprendizaje del test.

El programa de intervención se llevó a cabo durante las 4 semanas posteriores a la realización del test con una frecuencia de dos sesiones semanales (8 sesiones en total). Cada uno de los grupos realizó el trabajo que se detalla en la Tabla 2. La cantidad de trabajo, el número de series y repeticiones y las distancias recorridas fueron iguales para todos los grupos, exceptuando el GC. A todos los participantes se les indicaba que debían de realizar el trabajo a máxima intensidad. Con el mismo fin, en todos los ejercicios se potenció el elemento competitivo, realizando salidas simultáneas de 4-5 alumnos, con el fin de asegurar una intensidad máxima en la ejecución. Los contenidos de trabajo eran iguales en todas las sesiones, produciéndose una variación en la organización espacial para que la motivación se mantuviera constante a lo largo de todas las sesiones. En cada sesión del programa se realizó un calentamiento igual con todos los grupos que consistía en 2 min de carrera a baja intensidad por un espacio de 10x10 y 3 min de un juego de control en un espacio de 10x10m donde los alumnos corrían y se paraban a la señal del profesor.

Tabla 2. Características del programa de intervención de agilidad en cada una de las sesiones (Interferencia contextual baja (ICB), moderada (ICM) alta (ICA) y grupo control (GC)).

GRUPO Interferencia Contextual Baja (ICB)

Características: una sola acción, conocida de inicio. Ejercicios de habilidad cerrada en una dirección y distancia pre acordada.

2x5m carrera adelante	2x10m carrera adelante	2x10m carrera adelante		
2x5m carrera espaldas	2x10m carrera espaldas	2x10m carrera espaldas		
2x5m carrera lateral dcha	2x10m carrera lateral dcha	2x10m carrera lateral dcha		
2x5m carrera lateral izda	2x10m carrera lateral izda	2x10m carrera lateral izda		

GRUPO Interferencia Contextual Moderada (ICM)

Dos acciones, conocidas de inicio. Ejercicios de habilidad cerrada en dos direcciones y distancia pre acordada.

2x4m carrera adelante+giro a cono	2x4m carrera adelante+giro a cono+5m adelante	2x9m carrera adelante+1m carrera lateral
2x4m carrera espaldas+giro a	2x4m carrera espaldas+giro a	2x4m carrera espaldas+1m carrera
cono	cono+5m espalda	lateral
2x4m carrera lateral dcha+giro a cono	2x4m carrera lateral dcha+giro a cono+5m lateral dcha	2x4m carrera lateral dcha+1m carrera lateral
2x4m carrera lateral izda+giro a cono	2x4m carrera lateral izda+giro a cono+5m lateral izda	2x4m carrera lateral izda+1m carrera lateral

GRUPO Interferencia Contextual Alta (ICA)

Dos o más acciones con respuesta inmediata (toma de decisión). Ejercicios de destrezas abiertas según las señales percibidas. Estímulo auditivo y discriminación por números y colores.

2x5m carrera adelante a cono desconocido de inicio 2x5m carrera espaldas a cono desconocido de inicio 2x5m carrera lateral dcha a cono desconocido de inicio 2x5m carrera lateral izda a cono desconocido de inicio desconocido de inicio

2x10m carrera adelante, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados 2x10m carrera espaldas, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados 2x10m carrera lateral dcha, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados 2x10m carrera lateral izda, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados nombrados de los 3 colocados

2x8m carrera adelante, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados+2m a cono final nombrado.

2x8m carrera espaldas, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados+2m a cono final nombrado.

2x8m carrera lateral dcha, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados+2m a cono final nombrado.

2x8m carrera lateral izda, trayectoria desconocida (tocar dos conos nombrados de los 3 colocados+2m a cono final nombrado.

GRUPO Control (GC)

No realizan ninguna actividad de desplazamientos, velocidad ni agilidad. Únicamente realizan actividades de expresión corporal.

La semana siguiente de haber finalizado el programa de intervención, se realizó el postest (MAT2) en las mismas condiciones de realización del pretest (hora de realización, lugar, condiciones ambientales, material utilizado...) y respetándose también la distribución y ordenación del grupo. Todos los test se realizaron en interior, en el mismo lugar y superficie, una pista de parquet sintético del gimnasio deportivo escolar, con el mismo material y fueron supervisados por los mismos investigadores. Para realizar la recogida de datos se utilizaron hojas de registro específicas para cada una de las pruebas. En ambos se midió el tiempo empleado en realizar el test de agilidad MAT2. En todas las sesiones de test el calentamiento previo realizado fue el mismo: 3´de carrera a baja intensidad, ejercicios de skiping, skalping, amplitud de zancada y aceleraciones. Todos los participantes disponían del material e indumentaria adecuada para la práctica de los test.

Test MAT2: Para la valoración de la agilidad se utilizó el Modified Agility T-test 2 (MAT2). El test de agilidad MAT2 consiste en realizar 3 series del recorrido en T planteado (Figura 1) en el menor tiempo posible, con un descanso de 4 minutos entre cada una de ellas, el tiempo suficiente para volver andando a la salida y esperar el turno, basado en las indicaciones realizadas por Sassi y col. (2009) para el test MAT, introduciéndose como única modificación el hecho de tocar la parte superior de los conos al finalizar cada uno de los desplazamientos definidos, en vez de en su base. La modificación introducida se justifica en la intención de facilitar la ejecución del test en edades tempranas. Los motivos de la selección del test fueron su corta duración y la variedad de tipos de desplazamientos a realizar: desplazamientos hacia adelante, atrás y laterales sin cruzar las extremidades inferiores. Los participantes, colocados a 0,5 metros del punto A, realizaban la salida cuando ellos lo consideraban oportuno corriendo hacia adelante hasta llegar al punto B y tocar la parte superior del cono con la mano derecha. A continuación, realizar un desplazamiento lateral sin cruzar las piernas hasta tocar la parte alta del cono C con la mano izquierda. Dirigirse con otro desplazamiento lateral al cono D v tocarlo con la mano derecha en su parte superior. Volver con desplazamiento lateral al cono B y tocarlo con la mano izquierda en la parte más alta. Finalmente, volver lo antes posible al punto de partida A con una carrera de espaldas. La distancia total completada en cada serie fue de 20 m.

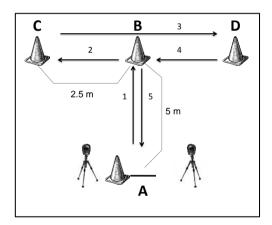


Figura 1. Grafico del recorrido realizado en el test MAT2

Cualquier serie que no cumpliera con los requisitos marcados se consideraba nula y tras el período de descanso marcado se debía repetir. Para el registro del tiempo empleado se utilizó 1 fotocélula (Laser System by DSD, Spain) colocada en el punto A, que media el tiempo empleado en realizar todo el recorrido. La altura de las células era de 0,4 m respecto al suelo y la precisión de ±0,001 s. Para el análisis de resultados y poder comparar los efectos del aprendizaje, se tomó el mejor valor de las tres series en cada test (Pretest y Postest).

Análisis estadístico

Se calcularon los estadísticos descriptivos medios y desviación estándar (DS). Se calculó la prueba de normalidad Kolmogorov-Smirnov con anterioridad al análisis de los datos para constatar el empleo de estadística paramétrica una vez cumplida la condición de distribución normal. La reproducibilidad del MAT2 se evaluó mediante el coeficiente de correlación intraclase (ICC) (Thomas y col. 2001), opción scale de SPSS 19,0 y el coeficiente de variación (CV): ((SD x 1,96)/Promedio) x 100 (Atkinson v Nevill, 1998, Bishop, 1997). Tanto para el CV como para el ICC el análisis se realizó respecto a las tres repeticiones realizadas en el pretest. Para analizar la diferencia entre los resultados del pretest y postest en los diferentes grupos se calculó un ANOVA de dos factores, con medidas repetidas en uno de ellos. La significatividad practica se calculó utilizando el tamaño de efecto de Cohen (Cohen, 1988). Tamaños de efecto (ES) mayores a 0,8, entre 0,8 y 0.5, entre 0,5 y 0,2 y menores a 0,2 fueron considerados altos, moderados, bajos y triviales respectivamente (Cohen, 1988). Para el análisis de los datos se utilizó Statistical Package for Social Sciences (versión 19,0 para Windows, SPSS Inc, Chicago, IL, USA). El nivel mínimo de significación estadística se estableció siempre que p<0.05.

RESULTADOS

El test MAT2 obtuvo buenos valores de fiabilidad y reproducibilidad (CV, 3,86%, e ICC 0,91, (p<0,01, 95%, rango 0,84-0,93) en estudiantes de educación primaria. Analizando las comparaciones entre pretest y postest dentro de cada nivel de CI, es decir, los efectos simples de cada factor, podemos observar que no hay diferencias entre los grupos en la línea base (pretest, p>0,05, ES=0,11). Tras la aplicación del programa de intervención, se muestran diferencias significativas entre el grupo de ICM y el grupo de ICB (postest, p<0,05, ES=0,79).

El análisis de la interacción de ambos factores (pre-post y grupos de IC) muestra una relación significativa (p<0,01, ES=0,85), lo que indica que el cambio producido entre pre y postest no es igual en los tres grupos de IC (alta, media y baja). En la tabla 3, se muestran los estadísticos descriptivos de los diferentes grupos de IC en pretest y postest. Salvo en el GC, existen diferencias significativas entre el pretest y el postest tanto en ICB (p<0,01, ES=0,83), ICM (p<0,01, ES=1,12) y en ICA (p<0,01, ES=0,93) produciéndose una mejora tras el programa de intervención en el resultado del test MAT2. Si bien el cambio ha resultado significativo en los tres grupos de intervención, el mayor descenso en el tiempo empleado para realizar la prueba se ha obtenido en el grupo de ICM.

Tabla 3. Resultados MAT2 en el pretest y postest en los diferentes grupos de Interferencia contextual (IC).

IC	Test	N	Min.	Max.	Media	DS
ICB	Pre	19	7,06	9,93	8,45	0,72
	Post	19	6,95	9,03	8,00*	0,52
ICM	Pre	19	7,25	10,09	8,36	0,75
	Post	19	6,51	8,52	7,39*#	0,63
ICA	Pre	19	6,69	10,91	8,08	0,90
	Post	19	6,51	8,91	7,62*	0,61
GC	Pre	19	7,16	9,85	8,38	0,65
	Post	19	7,07	9,75	8,26	0,57

ICB=interferencia contextual baja; ICM=interferencia contextual moderada; ICA=interferencia contextual alta; GC=grupo control.

DISCUSIÓN

Atendiendo a los resultados que se desprenden de este trabajo de investigación, con los tres programas de intervención (ICB, ICM e ICA) se han obtenidos cambios significativos en los valores de agilidad (MAT2) en escolares de educación primaria (9-10 años), mientras que para el GC no se observaron diferencias significativas. Los resultados obtenidos en este estudio, determinan que los tres programas de intervención, tanto los que realizan contenidos sin necesidad de responder a ningun estímulo con una sola acción (ICB) o varias acciones conocidas de antemano (ICM), como el programa donde se debía responder a un estímulo desconocido y dar una respuesta rápida (ICA), pueden ser métodos adecuados para aumentar la capacidad de cambiar de dirección en escolares de 9-10 años. Todos los grupos, salvo el GC, mejoraron la agilidad (test MAT2) a pesar de haber realizado programas diferentes en cuanto a la interferencia contextual se refiere. Así mismo, el grupo de interferencia contextual moderada (ICM), que incluye una combinación de dos acciones conocidas de antemano y donde se realizan ejercicios de habilidad cerrada en varias direcciones y distancias pre acordadas (Holmberg, 2009), constató diferencias significativas (p<0,05, ES=0,79) en los valores de postest con respecto al grupo de interferencia contextual baja (ICB), que incluye tareas de una sola acción, conocida de antemano, donde se realizan ejercicios de habilidad cerrada en una sola dirección y distancia pre acordada (Holmberg, 2009). Si bien el cambio ha resultado significativo en todos ellos, el mayor descenso en el tiempo empleado para realizar la prueba se ha obtenido en el grupo de ICM. Atendiendo a las características del test MAT2 nos encontramos ante una prueba conocida de antemano, por lo que no considera la toma de decisión, y con varios cambios de dirección, por lo que se podría presuponer una mayor

^{*}Diferencias significativas entre pretest y postest intragrupo, p<0,01, # diferencias significativas en postest grupo ICM y ICB, p<0,05.

mejora mediante el programa de ICM, debido a la similitud del test utilizado con el programa realizado. Al haber utilizado un test de COD no podemos conocer los posibles efectos positivos de un programa de intervención con necesidad de responder a un estímulo respecto a un test reactivo, lo cual ha sido constatado con jugadores de rugby australiano U-20 (Serpell y col., 2011), pero si podemos saber que el trabajo de interferencia contextual alta, ha sido beneficioso en los resultados obtenidos en un test de COD.

Atendiendo a las afirmaciones de varias investigaciones (Herbert y col. 1996. Holmberg, 2009. Landin v Herbert, 1978) los programas de ICA tienden a abrumar a los principiantes en las etapas anteriores de la adquisición de la habilidad y pueden disminuir el rendimiento. Sin embargo, en nuestro trabajo observamos que para alumnos de 9-10 años, los tres programas son válidos para la mejora de la capacidad de cambiar de dirección y que el más efectivo de los tres es el de ICM. Posiblemente, los escolares de 9-10 años, ya hayan alcanzado un nivel de maduración suficiente como para poder asimilar los tres tipos de trabajos planteados en este estudio. Incluso los participantes de nuestro estudio incluidos en el grupo de ICA, han mejorado su rendimiento en el test de agilidad de forma significativa. A estas edades parece ser que el programa de ICB, a priori el más sencillo de todos, es el menos eficiente. Tal y como se desprende de nuestro estudio, en la segunda etapa de educación primaria (9-10 años) los programas de ICM pueden resultar los más eficaces. Aun así, no habría que descartar la utilización de otros programas de agilidad ICB e ICA, ya que también se observan cambios significativos.

Son varios los estudios que determinan que el trabajo de agilidad se debe programar en función del nivel de los participantes (Abernethy y col. 1998, Herbert y col. 1996, Hertel y col 1999, Holmberg, 2009, Savelsberg y col. 2004). La edad y el diferente desarrollo madurativo y motor es uno de los factores que afectan a esta habilidad (Erceg y col. 2008). En la misma línea, Singh y col. (1987), encuentran diferencias significativas en los niveles de agilidad medidos a través del test *zig zag run*, en niños de 10 años con respeto a 9 años y en niños de 12 años con respecto a 11 años. Curiosamente, no se constatan diferencias entre los niños de 11 años y 10 años. En edades superiores a los 12 años, estos autores no encuentran diferencias en los niveles de agilidad entre los valores obtenidos por los participantes de 13-16 años (Singh y col. 1987). Posiblemente los programas de intervención deban ser diferentes en cada etapa y la edad de 6-12 años pueda ser considerada como una época critica para la mejora de esta habilidad.

Los efectos que provoca en la agilidad un trabajo de resistencia en niños de 10-14 años también han sido evaluados (Chatterjee y Bandyopadhyay, 1993). Después de realizar un trabajo de carrera a moderada intensidad durante 12 semanas, únicamente los participantes de 11 años lograron mejoras significativas en agilidad (*Shuttle Run Test*). En el resto de participantes de diferentes edades, tanto del grupo control como experimental no se obtuvieron diferencias entre pretest y postest. Posiblemente estos resultados sean debidos a que el trabajo realizado no fue específico para la mejora de esta habilidad.

Son necesarios más estudios realizados con alumnos de primaria que contemplen el comportamiento de la agilidad después de aplicar diferentes programas de intervención de COD. La mayor parte de los estudios realizados sobre agilidad son con deportistas de distintas modalidades (Alves y col. 2010, Jovanovic y col. 2010, Serpell y col. 2009) y de diferentes edades (Alves y col. 2010, Pauole y col. 2000, Serpell y col. 2009, Sheppard y col. 2006, Sporis y col. 2010) y normalmente se aplican programas de entrenamiento deportivo, realizando trabajos resistencia (Chatterjee y Bandyopadhyay, 1993) o de fuerza en sus diferentes manifestaciones (Alves y col. 2010, Jovanovic y col. 2010, Sheppard y col. 2006).

En el presente trabajo, después de realizar un programa específico de agilidad durante 4 semanas en niños de 9-10 años, se obtuvieron mejoras en los tres grupos analizados, CI baja, moderada y alta. Este aspecto nos invita a pensar que cualquiera de los tres métodos es aplicable en estas edades, si bien el mas efectivo es un programa que incluya tareas cerradas de dos acciones, de forma sencillas evitando la complejidad y la respuesta a un estímulo. Este aspecto puede ser de gran ayuda para los profesionales interesados en programar este contenido de forma adecuada en sus sesiones de educación física. En investigaciones resultaría futuras interesante observar comportamiento de la agilidad con otros programas de intervención distintos en volumen, intensidad, frecuencia y características de las tareas, así como en otras edades con el fin de profundizar en los conocimientos sobre esta habilidad.

CONCLUSIONES

Se han obtenido diferencias significativas, en la agilidad (test MAT2), en los grupos de interferencia contextual baja, moderada y alta después de un programa de intervención de 4 semanas de duración en alumnos del cuarto curso de primaria. Estas diferencias han sido superiores en el grupo de interferencia moderada.

Se han encontrado diferencias significativas en el postest entre el grupo de interferencia contextual moderada y baja.

En edades tempranas, parece recomendable utilizar programas de interferencia contextual baja. A medida que el nivel madurativo de los alumnos es mayor, podría ser interesante implementar otro tipo de programas más complejos (interferencia contextual moderada y alta), con tareas que impliquen más de una acción e ir introduciendo factores de percepción y decisión frente a distintos estímulos. Este aspecto puede ser de gran importancia a la hora de programar las unidades didácticas de agilidad en la asignatura de educación física en educación primaria, ya que puede resultar interesante introducir contenidos de interferencia contextual moderada y alta a partir del segundo ciclo de enseñanza.

REFERENCIAS BIBLIOGRÁFICAS

Abernethy, B, Wann, J, and Parks, S. (1998) Training perceptual motor skills for sport. In: Training for Sport: Applying Sport Science. Elliott B, ed. Chichester, United Kingdom: John Wiley, pp. 1–68.

- Alves, JM, Natal, A, Abrantes, C, and Sampaio, J. (2010). Short-term effects of complex and contrast training in soccer players vertical jump, sprint and agility abilities. J Strength Cond Res, 24(4), 936-941. http://dx.doi.org/10.1519/JSC.0b013e3181c7c5fd
- Amusa, LO, Goon, DT, and Amey, AK. (2010). Gender differences in neuromotor fitness of rural South African children. Med Sport, 63, 221-237.
- Atkinson, G., and Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med, 26(4), 217-38. http://dx.doi.org/10.2165/00007256-199826040-00002
- Bishop, D. (1997). Reliability of a 1-h endurance performance test in trained female cyclists. Med Sci Sports Exerc, 29(4), 554-9. http://dx.doi.org/10.1097/00005768-199704000-00019
- Brown, WH, Pfeiffer, KA, McIver, KL, Dowde, M, Almeida, M, Joao, CA, and Pate, RR. (2006). Assessing preschool children's physical activity: the observational system for recording physical activity in children-preschool version. Res Q Exerc Sport, 77(2), 167-176. http://dx.doi.org/10.1080/02701367.2006.10599351
- Brughelli, M, Cronin, J, Levin, G, and Chaouachi, A. (2008). Understanding change of direction ability in sport. Sports Med, 38(12), 1045-1063. http://dx.doi.org/10.2165/00007256-200838120-00007
- Chatterjee, S, and Bandyopadhyay, A. (1993). Effect of continuous slow-speed running for 12 weeks on 10-14 year old Indian boys. Br J Sport Med, 27(3), 179-185. http://dx.doi.org/10.1136/bjsm.27.3.179
- Cohen, J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.
- Erceg, M, Zagorac, N, and Katic, R. (2008). The impact of football training on motor development in male children. Coll Antropol, 32(1), 241-247.
- Finn, K, Johannson, N, and Specker, B. (2002). Factors associated with physical activity in preschool children. J Pediatric, 140, 81-85. http://dx.doi.org/10.1067/mpd.2002.120693
- Herbert, EP, Landin, D, and Solmon, MA. (1996). Practice schedule effects on the performance and learning of low and high skilled students: An applied study. Res Q Exerc Sport, 67, 52–58. http://dx.doi.org/10.1080/02701367.1996.10607925
- Hertel, J, Denegar, CJ, Johnson, SA, Hale, SA, and Buckley, WE. (1999). Reliability of the Cybex reactor in the assessment of an agility task. J Sport Rehabil, 8, 24–31.
- Holmberg, P. (2009). Agility training for experienced athletes: A dynamical systems approach. Strength Cond J, 31(5), 73-78. http://dx.doi.org/10.1519/SSC.0b013e3181b988f1
- Jackson, DM, John, JR, Kelly, LA, Montgomery, C, Grant, S, Paton, JY. (2003). Objectively measured physical activity in a representative sample of 3-4 year old children. Obesity Res, 11, 420-425. http://dx.doi.org/10.1038/oby.2003.57
- Jeffreys I. (2006). Motor learning—Applications for agility, part 1. Strength Cond J. 28, 72–76.
- Jovanovic, M, Sporis, G, Omrcen, D, and Fiorentini, F. (2010). Effects of speed, agility, quickness training on power performance in elite soccer players. J

- Strength Cond Res, 25(5), 1285-92. http://dx.doi.org/10.1519/JSC.0b013e3181d67c65
- Kostić, R, Miletić, D, Jocić, D, and Uzunović, S. (2003). The influence of dance structures on the motor abilities of preschool children. Facta Universitatis, Series Physical Education and Sport, 1(9), 83-90.
- Lam, HM, and Schiller, W. (2001). A pilot study on the gross motor proficiency of Hong Kong preschoolers aged 5 to 6 years. Early Child Dev Care, 171(1), 11-20.
 - http://dx.doi.org/10.1080/0300443011710102
- Landin, D, and Herbert EP. (1997). A comparison of three practice schedules along the contextual interference continuum. Res Q Exerc Sport, 68, 357–361.
 - http://dx.doi.org/10.1080/02701367.1997.10608017
- Little, T, and Williams, AG. (2005). Specificity of acceleration, maximum speed, and agility in professional soccer players. J Strength Cond Res 19, 76–78.
- McKenzie, TL, Sallis, JF, Broyles, SL, Zive, M, Nader, PR, Berry, C, and Brennan, J. (2002). Childhood movement skills: predictors of physical activity in Anglo American and Mexican American adolescents? Res Q Exerc Sport, 73(3), 238-244. http://dx.doi.org/10.1080/02701367.2002.10609017
- Melody, O, Schofield, GM, and Kolt, GS. (2007). Physical activity in preschoolers: Undestanding prevalence and measurement issues. Sports Med, 37(12), 1045-1070. http://dx.doi.org/10.2165/00007256-200737120-00004
- Meylan, C, and Malatesta, D. (2009). Effects of in-season plyometric training whitin soccer practice on explosive actions of young players. J Strength Cond Res, 23(9), 2605-2613. http://dx.doi.org/10.1519/JSC.0b013e3181b1f330
- Miller, MG, Herniman, JJ, Ricard, MD, Cheatham, CC, Michael, TJ. (2006). The effects of a 6-week training program on agility. J Sports Sci Med, 5, 459-465.
- Oxyzoglou, N, Kanioglou, A and Ore, G. (2009). Velocity, agility and flexibility performance after handball training versus physical education program for preadolescent children. Perc Motor Skills, 108, 873-877. http://dx.doi.org/10.2466/pms.108.3.873-877
- Pate, RR, Pfeiffer, KA, Trost, SG, Ziegler, P, and Dowda, M. (2004). Physical activity among children attending preschools. Pediatrics, 114(5), 1258-63. http://dx.doi.org/10.1542/peds.2003-1088-L
- Pauole, K, Madole, K, Garhammer, J, Lacourse, M, and Rozenek, R. (2000). Reliability and validity of T-Test as a measure of agility, leg power, and leg speed in college-aged men and women. J Strength Cond Res, 14(4), 443-450.
- Reilly, T, Williams, A, Nevill, A, and Franks, A. (2000). A multidisciplinary approach to talent identification in soccer. J Sports Sci, 18, 695-702. http://dx.doi.org/10.1080/02640410050120078
- Robles-Rodríguez, J, Giménez Fuentes-Guerra, FJ, y Abad Robles, MT (2011). Metodología utilizada en la ense-anza de los contenidos deportivos durante la E.S.O. Rev Inter Med Cienc Act Fis Dep, 10(41), 35-57.
- Sanders, S. (1993). Developing appropriate movement practices for 3- to 5- year olds. Teaching Elementary Phys Educ, 4(5), 1-16.
- Sassi, RH, Dardouri, W, Yahmed, MH, Gmada, N, Mahfoudhi, ME, and Gharbi, Z. (2009). Relative and absolute reliability of a Modified Agility T-Test and its relasionship with vertical jump and straight sprint, J Strength Cond Res, 23(6), 1644-1651. http://dx.doi.org/10.1519/JSC.0b013e3181b425d2

- Savelsbergh, GJP, Van der Kamp, J, Oudejans, RRD, and Scott, MA. (2004) Perceptual learning is mastering perceptual degrees of freedom. In: Skill Acquisition in Sport: Research Theory and Practice. Williams AM and Hodges NJ, eds. London, England: Routledge, pp. 374–389.
- Schmidt, RA, and Wrisberg, CA. (2004) Motor Learning and Performance (3rd ed.). Champaign, IL: Human Kinetics, pp. 183–275.
- Serpell, BG, Ford, M, and Young, WB. (2009). The development of a new test of agility for rugby league. J Strength Cond Res, 24(12), 3270-7. http://dx.doi.org/10.1519/JSC.0b013e3181b60430
- Serpell, BG, Young, WB, and Ford, M. (2011). Are the perceptual and decision-making components of agility trainable? A preliminary investigation. J Strength Cond Res, 25(5), 1240-8. http://dx.doi.org/10.1519/JSC.0b013e3181d682e6
- Sheppard, JM, Young, WB, Doyle, TLA, Sheppard, TA, and Newton, RU. (2006). An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J Sci Med Sport, 9, 342-349. http://dx.doi.org/10.1016/j.jsams.2006.05.019
- Singh, MA, Joon, BA, and Kooner, MA. (1987). Development of motor abilities of trained Indian boys of 9-16 years of age. Br J Sports Med, 21(2), 34-35. http://dx.doi.org/10.1136/bism.21.2.34
- Sporis, G, Milanovic, L, Jukic, I, Omrcen, and D, Sampedro, J. (2010). The effect of agility training on athletic power performance. Kinesiology, 42(1), 65-72. Thomas, JR, Nad

Número de citas totales / Total references: 40 (100%) Número de citas propias de la revista / Journal's own references: 1 (2,5%)

Rev.int.med.cienc.act.fís.deporte - vol.15 - número 59 - ISSN: 1577-0354