Balsalobre-Fernández, C. y Tejero-González, C.M. (2015). Efecto del entrenamiento con cargas sobre la grasa corporal en personas obesas. Revisión sistemática / Effects Of Resistance Training On The Body Fat In Obese People. Systematic Review. Revista Internacional de Medicina y Ciencias de la Actividad Física el Deporte, vol. 15 (58) pp. 371-386. y Http://cdeporte.rediris.es/revista/revista58/artefecto558.htm

REVISIÓN / REVIEW

EFFECTS OF RESISTANCE TRAINING ON THE BODY FAT IN OBESE PEOPLE. SYSTEMATIC REVIEW

EFECTO DEL ENTRENAMIENTO CON CARGAS SOBRE LA GRASA CORPORAL EN PERSONAS OBESAS. REVISIÓN SISTEMÁTICA

Balsalobre-Fernández, C.¹ and Tejero-González, C.M.²

¹ Researcher in training, Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid. MSc. on High Performance in Sports (Spanish Olympic Comitee-Autonomous University of Madrid), MSc. on Physical and Sports Performance (Pablo de Olavide University). (<u>carlos.balsalobre@uam.es</u>)

² Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid. National Track&Field Coach (<u>www.uam.es/carlos.tejero; carlos.tejero@uam.es</u>).

Spanish-English translator: Carlos Balsalobre-Fernández

Código UNESCO / UNESCO code: 3299 Otras especialidades médicas (Fisiología del ejercicio) / Other medical specialties (Exercise Physiology) **Clasificación del Consejo de Europa / European Council Classification:** 6.

Recibido 16 de marzo de 2012 Received March 16, 2012 Aceptado 5 de enero de 2014 Accepted January 5, 2014

ABSTRACT

Nowadays obesity is a disease of high prevalence, that's why scientific community is interested to research it. A line of relevant investigation is to analyze effects of strength training on reduction of obesity. This paper reviews the bibliographic research until the year 2011 which analyzed if the strength training reduces body fat of obese people. Results found are divergent. Half of studies conclude that training with loads reduces body fat and the other half do not. However, there are not studies where participants increased their body fat. At the same time, this study reports about some strength training parameters and about guidelines for future research in this topic.

KEY WORDS: health, obesity, strength.

RESUMEN

La obesidad, una de las enfermedades más preocupantes hoy en día, ha impulsado la búsqueda de nuevas estrategias interdisciplinares entre la comunidad científica. Una línea de investigación de actual relevancia es la que analiza en qué medida un programa de intervención con cargas tiene efecto sobre la reducción de la obesidad. En este trabajo se revisa la producción bibliográfica hasta el año 2011 que ha investigado el efecto de los programas basados única y exclusivamente en entrenamiento con cargas, sobre la grasa corporal en personas obesas. Los resultados son divergentes, pues la mitad de estudios concluyen que el entrenamiento con cargas reduce la grasa corporal y la otra mitad no, si bien en ningún estudio se ha incrementado significativamente la grasa corporal de los participantes. Se aportan cuáles han sido los parámetros de entrenamiento y se sugieren pautas para la investigación a corto plazo sobre este particular.

PALABRAS CLAVE: salud, obesidad, fuerza.

INTRODUCTION

Athletes use resistance training to increase their muscular strength, but few years ago its benefits on health condition have been widely studied (12, 19, 37, 42). In this way, institutions like the National Strength and Conditioning Association or the American College of Sports Medicine include resistance training in their exercise guidelines and prescriptions for people who want to increase their health (8, 43). In fact, some authors had observed a negative relationship between muscular strength and prevalence of obesity (22).

The big public health that obesity, overweight and related syndromes suppose have promoted the research on new strategies that could help in reducing such diseases (24, 27, 31, 32). At this respect, a highly topical research line is that analyzing the positive effects that resistance training has on body composition (3, 5, 30), since many investigations have shown that this kind of training could lead a reduction of total body fat (7, 26, 38, 40, 41), or even visceral fat, which is potentially the most dangerous (18, 20, 21).

However, most papers studying this topic use multi-factorial approaches that also include other kind of exercise (i.e., aerobics) and/or diet modifications (13, 23, 25). Thus, the role of the resistance training itself on reducing body fat is still unclear, since its effects may be blurred by other variables.

Thereby, the purpose of this systematic review is to know the effect of interventions based exclusively on resistance training on the body fat of overweight/obese people.

METHODS

Databases and search pattern

Pubmed and SportDiscus databases were revised without any temporal filter.The search was conducted on January 2014. In order to find studies using exclusively resistance training programs to analyze its effects on body fat on overweight/obese people, the following search pattern was used: (obes* OR "overweight") AND ("resistance training" OR "strength training" OR "weight training" OR "weight lifting") AND ("fat" OR "body composition") NOT ("diet").

Inclusion criteria

To homogenize the search results, in order to compare studies to find common conclusions, the following inclusion criteria were used:

- Randomized trials with control group.
- Overweight or obese participants.
- o Interventions based exclusively on resistance training programs.
- No diet modifications.
- Body fat measured using dual-energy X-ray absorptiometry (DEXA).

A detailed scheme of the paper-selection process can be found on Figure 1.

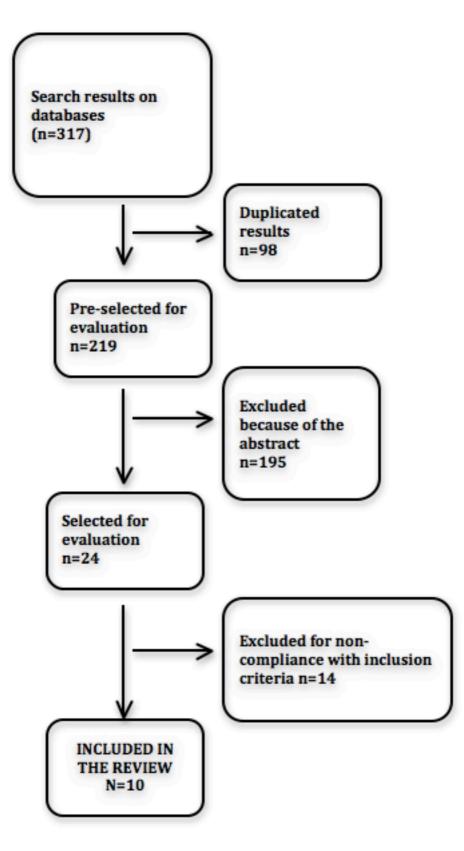


FIGURE 1. Databases search process scheme

RESULTS

The search found a total of 317 results. Ninety-eight of them were duplicated references among databases. Also, 195 references were excluded because of the information included in the abstracts, which didn't match the inclusion criteria. Finally, 24 papers were completely analyzed, with 14 being eliminated of the review for not matching the inclusion criteria (1, 4, 7, 9, 10, 14-16, 28, 29, 35, 39, 41, 44).

The 10 resulting papers (2, 6, 11, 17, 26, 33, 34, 36, 38, 40) match all the inclusion criteria. Details of participants profile, programs designs and main results can be found on Table 1. It should be noted that some papers measured some other variables in addition to body fat, but these weren't analyzed for not being the purpose of this systematic review.

Author	Journal year;Vol:Pag	Title	Purpose	Participants	Resistance training program	Main variables	Main results
Olson et al.	International Journal Of Obesity 2007; 31(6):996- 1003	Changes in inflammatory biomarkers following one- year of moderate resistance training in overweight women	To evaluate the effects of 1-year of resistance training on inflammatory and health markers on overweight women.	28 (12 control, 16 resistance training) overweight women (BMI>25kg/m2), 24–44years	9 exercises, 3 sets with 8-10 repetitions, twice a week during a year	Muscular strength, body composition, blood pressure, lipid profile.	No significant changes on total body fat or %body fat were observed after the intervention
Kwon et al.	Korean Diabetes Journal 2010; 34(2):101- 110.	The effects of resistance training on muscle and body fat mass and muscle strength in type 2 diabetic women	To investigate the effects of low- intensity resistance training on body fat, muscular strength, cardiovascular fitness and insulin sensitivity on overweight diabetes-II women	28 overweight women with diabetes type II (45-65 years, BMI=27.1±2.3) 13 resistance training, 15 control group	40 minutes, theraband-based program, 6 exercises, 3 sets with 10-15 repetitions, about 40-50%RM, three times per week for 12 weeks	Body fat, lean mass, muscular strength, cardiovascular fitness, insulin sensitivity	Both total body fat and abdominal fat lowered significantly in comparison with the control group (p< 0.05)

TABLE 1. Information of the studies included in the systematic review

Schmitz et al.	The American Journal Of Clinical Nutrition 2007; 86(3):566- 572.	Strength training and adiposity in premenopausal women: strong, healthy, and empowered study.	To assess the benefits of the resistance training on body and intra- abdominal fat	164 (82 resistance training, 82 control) 25-44 years overweight and obese women (BMI 25– 35 kg/m2)	8-10 exercises, 2 sets with 8-10 repetitions. 2 years intervention	Total body and intraabdominal fat	After the 2 years intervention, the %body fat (p <0.05) and intra- abdominal fat (p <0.05) were significantly reduced
Olson et al.	Medicine & Science in Sports & Exercise 2006; 38(9):1558- 1564	Moderate Resistance Training and Vascular Health in Overweight Women	To examine the effects of 1 year of resistance training on vascular structure and body composition on overweight women	30 (15 control, 15 resistance training) 24-44 years old overweight women (BMI>25kg/m2)	9 exercises, 3 sets with 8-10 repetitions twice a week during a year	Vascular function and structure, body composition, blood pressure, lipid profile	There were no significant changes on body fat after the intervention

Boucha rd et al.	Menopause 2009; 16(1):66-72.	Impact of resistance training with or without caloric restriction on physical capacity in obese older women	To investigate the impact of resistance training without caloric restriction on fitness and body composition on middle-aged and elderly obese	48 obese women (%body fat 46.4%) with ages between 55-75 years 12, resistance training, 12 control, other 24 caloric restriction	9 exercises, 3 sets with 8 repetitions, 80%RM, three times per week for 12 weeks	Body weight, total body fat, lean mass, BMI and many functional tests	No significant changes on body fat were observed after the resistance training intervention
Shaibi et al.	Medicine and science in sports and exercise 2006 38(7):1208- 1215.	Effects of resistance training on insulin sensitivity in overweight Latino adolescent males	To examine the effects of 16 weeks of resistance training on young people with high risk of diabetes type II	22 obese adolescent (15 years old; BMI = 32.5 ± 1.6). 11 resistance training, 11 control group	5 exercises, 1-3 sets with 8-15 repetitions, 60- 95%RM, twice a week for 16 weeks	Muscular strength, body composition, insulin sensitivity	The percent of body fatwas reduced significantly after the training (p<0.05) in the resistance training program with respect to the control group
Donges et al.	Appl Physiol Nutr Metab. 2012;37(3):4 99-509	Effects of resistance or aerobic exercise training on total and regional body composition in sedentary overweight middle-aged adults	To investigate the effects of 10 weeks of resistance training on total and relative body fat on middle-aged, sedentary, overweight men and women	61 men and women (years between 45-65 years; BMI>27kg/m2), 35 resistance training, 26 control group	7 exercises, 2-3 sets with 8-10 repetitions, 70- 75%RM, three times per week for 10 weeks	Muscular strength, aerobic capacity, total and relative body fat	Total body fat didn't change significantly on women (p>0.05), but did on men (p<0.05).

Ho et al.	BMC Public Health. 2012;12:704	The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial	To study the effects of 12 weeks of resistance training on cardiovascular risk factors on overweight and obese men and women	64 men and women (40-64 years; BMI>25kg/m2), 16 resistance training, 16 control group, 32 other kind of aerobic training	5 exercises, 4 sets with 8-12 repetitions, 70%RM, 5 times per week for 12 weeks	Cardiovascular risk profile and body composition	There were no significant differences after training on total body fat or %body fat, although significant differences were found on the group who combined resistance training with aerobics
Alberga et al.	Phys Sportsmed. 2013;41(3):1 03-9	The effects of resistance exercise training on body composition and strength in obese prepubertal children	To study the effects of resistance training on obese preadolescent children	19 boys and girls with ages between 8-12 years, BMI>95 th percentile for their age and sex, 12 resistance training, 9 control group	75 minutes per session, twice per week for 12 weeks. More details couldn't be found.	Body composition (%body fat, %lean mass, height, weight) and upper and lower-body muscular strength	There weren't significant changes on %body fat or fat mass index after the training
Roberts et al.	Metabolism. 2013;62(5):7 25-33	Resistance training increases SHBG in overweight/obese, young men	To study if 12 weeks of resistance training can increase the sex hormone- binding globulin and body composition on obese and overweight adolescents	49 participants (18-35 years, BMI >27 km/m2), 36 resistance training, 13 control group	7 exercises, 6-15 repetitions, 60- 80%RM, three times per week for 12 weeks	Different hormonal markers, total body fat, %body fat, %lean mass, BMI	Participants on the resistance training group reduced their total body fat and %body fat significantly with respect to the control group (p<0.05)

As seen on Table 2, just the half of the studies shown significant reductions on the body fat after a resistance training program.

Results	Reference	Absolute total body fat change (kg.)	Percent of change of total body fat (%)	Statistical signification (P)
	Kwon et al. (2010)	-1.75	-8.2	< 0.001*
	Schmitz et al. (2007)	-3.19	-10	< 0.05*
Statistically significant *	Shaibi et al. (2006)	-2.5	-6.7	< 0.05*
Signineant	Donges et al. (2012)	-1.5	-5	< 0.05*
	Roberts et al.	-1.5	-7.1	< 0.05*
	Bouchard et al. (2009)	0.3	0.87	> 0.05
	Olson et al. (2006)	-0.1	-0.3	> 0.05
No significant	Olson et al. (2007)	-0.5	-1.5	> 0.05
	Ho et al. (2012)	-0.3	-0.5	> 0.05
	Alberga et al. (2013)	No reported	No reported	> 0.05

DISCUSSION

The analysis of the revised papers shows different effects of the resistance training on the body fat reduction: half of the studies found significant reductions on body fat after the training, while the other half found no significant changes. When body fat reduction occurs, losses between 1.75 and 3.2 kg were found, which means a percent of change between 5% and 10%. On the other hand, in these investigations where no significant changes were found, body fat variations between -0.5 and 0.3 kg were observed, resulting in a percent of change between -15% and 0.8%. These findings shows that resistance training can, at least, avoid the increase of body fat, which is something very positive in a context in which American sedentary women between 25-44 years old gain 1 kg of fat per year (38).

With respect with resistance training programs designs, studies present big differences on the configurations of duration and intensity of the training. Thus the studies that found significant changes after a resistance training program, a 10 (11), 12 weeks (26, 36), 16 weeks (40) or 1 year (38) program duration were used. For its part, the studies that found no significant changes after a resistance training program, program duration lasted 1 year (33, 34) or 12 weeks (2, 6, 17). Moreover, training intensity is described poorly and varies from 40% to 95%RM (6, 26, 40) which highlights the great heterogeneity of the programs used on the revised papers.

Under the above, the following is suggested to investigate this topic in the future:

- 1. To define exactly the training intensity.
- 2. To compare different training intensities to observe which one produce greatest benefits.

- 3. To compare similar programs with different durations, to observe which one has more effects on body fat reduction.
- 4. To analyze the effects of the resistance training on body fat reduction on different populations, and to compare the effects on each one (i.e., children, elderly, men, women).

These recommendations could lead a better understanding of the effects of the resistance training on the reduction of body fat, since, at present, the diversity on the programs used in the literature can't allow us to extract accurate conclusions about the more optimal program design. However, the review conducted in this study allows us to provide some general conclusions about the use of resistance training for reducing the body fat. These conclusions are detailed in the following section.

CONCLUSIONS

This systematic review found very heterogeneous studies. Although training methodologies and the effects of the intervention varies from one study to another, common conclusions have been extracted from all of them.

First, resistance training, at least, can avoid the increase of total body fat in all of the studies revised, and on the half of the studies, significant reductions up to 10% of the body fat were observed. Thus, resistance training is one valid strategy to be considered to reduce, or at least prevent the increases of body fat in obese and overweight people.

Second, despite the methodological differences observed among the studies revised, all of them used 2-3 sessions per week, with more than 5 exercises at a intensity above 40%RM and durations above 40 minutes per session. Thus, this seems to be an adequate recommendation to design a resistance training program to reduce or prevent the increase of body fat in obese and overweight people.

Summarizing, resistance training is a good alternative approach to be considered in the interventions designed to reduce the body fat.

REFERENCES

- 1. Ahmadizad S, Ghorbani S, Ghasemikaram M, and Bahmanzadeh M. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. *Clinical biochemistry*, 2013.
- 2. Alberga AS, Farnesi BC, Lafleche A, Legault L, and Komorowski J. The effects of resistance exercise training on body composition and strength in obese prepubertal children. *Phys Sportsmed* 41: 103-109, 2013.
- 3. Avila JJ, Gutierres JA, Sheehy ME, Lofgren IE, and Delmonico MJ. Effect of moderate intensity resistance training during weight loss on body composition and physical performance in overweight older adults. *Eur J Appl Physiol* 109: 517-525, 2010.
- 4. Baldi JC and Snowling N. Resistance training improves glycaemic control in obese type 2 diabetic men. *Int J Sports Med* 24: 419-423, 2003.
- 5. Bea JW, Cussler EC, Going SB, Blew RM, Metcalfe LL, and Lohman TG. Resistance Training Predicts 6-yr Body Composition Change in Postmenopausal Women. *Med Sci Sport Exer* 42: 1286-1295, 2010.
- 6. Bouchard DR, Soucy L, Sénéchal M, Dionne IJ, and Brochu M. Impact of resistance training with or without caloric restriction on physical capacity in obese older women. *Menopause* 16: 66-72, 2009.
- 7. Chaudhary S, Kang MK, and Sandhu JS. The Effects of Aerobic Versus Resistance Training on Cardiovascular Fitness in Obese Sedentary Females. *Asian Journal of Sports Medicine* 1: 177-184, 2010.
- 8. Coburn JW and Malek MH. *NSCA's Essentials of Personal Training.* Human Kinetics Publishers, 2011.
- 9. Croymans DM, Krell SL, Oh CS, Katiraie M, Lam CY, Harris RA, and Roberts CK. Effects of resistance training on central blood pressure in obese young men. *Journal of human hypertension*, 2013.
- 10. Croymans DM, Paparisto E, Lee MM, Brandt N, Le BK, Lohan D, Lee CC, and Roberts CK. Resistance training improves indices of muscle insulin sensitivity and beta-cell function in overweight/obese, sedentary young men. *Journal of applied physiology (Bethesda, Md : 1985)* 115: 1245-1253, 2013.
- 11. Donges CE and Duffield R. Effects of resistance or aerobic exercise training on total and regional body composition in sedentary overweight middle-aged adults. *Appl Physiol Nutr Metab* 37: 499-509, 2012.
- 12. Fahlman MM, McNevin N, Boardley D, Morgan A, and Topp R. Effects of Resistance Training on Functional Ability in Elderly Individuals. *Am J Health Promot* 25: 237-243, 2011.
- 13. Hansen D, Dendale P, Berger J, Van Loon LJC, and Meeusen R. The Effects of Exercise Training on Fat-Mass Loss in Obese Patients During Energy Intake Restriction. *Sports Med* 37: 31-46, 2007.
- 14. Hasson RE, Adam TC, Davis JN, Kelly LA, Ventura EE, Byrd-Williams CE, Toledo-Corral CM, Roberts CK, Lane CJ, Azen SP, Chou CP, Spruijt-Metz D, Weigensberg MJ, Berhane K, and Goran MI. Randomized controlled trial to improve adiposity, inflammation, and insulin resistance in obese African-American and Latino youth. *Obesity (Silver Spring)* 20: 811-818, 2012.
- 15. Hazley L, Ingle LEE, Tsakirides C, Carroll S, and Nagi D. Impact of a Short-Term, Moderate Intensity, Lower Volume Circuit Resistance Training

Programme on Metabolic Risk Factors in Overweight/Obese Type 2 Diabetics. *Res Sports Med* 18: 251-262, 2010.

- 16. Hernán-Jiménez O and Ramírez-Vélez R. Strength training improves insulin sensitivity and plasma lipid levels without altering body composition in overweight and obese subjects. *Endocrinología y Nutrición* 58: 169-174, 2011.
- 17. Ho SS, Dhaliwal SS, Hills AP, and Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. *BMC Public Health* 12: 704, 2012.
- Ibañez J, Izquierdo M, Arguelles I, Forga L, Larrion JL, Garcia-Unciti M, Idoate F, and Gorostiaga EM. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. *Diabetes Care* 28: 662-667, 2005.
- Ibañez J, Izquierdo M, Martinez-Labari C, Ortega F, Grijalba A, Forga L, Idoate F, Garcia-Unciti M, Fernandez-Real JM, and Gorostiaga EM. Resistance training improves cardiovascular risk factors in obese women despite a significative decrease in serum adiponectin levels. *Obesity* 18: 535-541, 2010.
- 20. Idoate F, Ibañez J, Gorostiaga EM, Garcia-Unciti M, Martinez-Labari C, and Izquierdo M. Weight-loss diet alone or combined with resistance training induces different regional visceral fat changes in obese women. *International Journal Of Obesity (2005)* 35: 700-713, 2011.
- 21. Ismail I, Keating SE, Baker MK, and Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. *Obesity Reviews: An Official Journal Of The International Association For The Study Of Obesity* 13: 68-91, 2012.
- 22. Jackson AW, Lee D-C, Sui X, Morrow JR, Jr., Church TS, Maslow AL, and Blair SN. Muscular strength is inversely related to prevalence and incidence of obesity in adult men. *Obesity* 18: 1988-1995, 2010.
- 23. Kerksick CM, Wismann-Bunn J, Fogt D, Thomas AR, Taylor L, Campbell BI, Wilborn CD, Harvey T, Roberts MD, La Bounty P, Galbreath M, Marcello B, Rasmussen CJ, and Kreider RB. Changes in weight loss, body composition and cardiovascular disease risk after altering macronutrient distributions during a regular exercise program in obese women. *Nutrition Journal* 9: 59-59, 2010.
- 24. Khan LK, Sobush K, Keener D, Goodman K, Lowry A, Kakietek J, and Zaro S. Recommended community strategies and measurements to prevent obesity in the United States. *Morbidity And Mortality Weekly Report Centers For Disease Control* 58: 1-26, 2009.
- 25. Kreider RB, Rasmussen C, Kerksick CM, Wilborn C, Taylor Lt, Campbell B, Magrans-Courtney T, Fogt D, Ferreira M, Li R, Galbreath M, Iosia M, Cooke M, Serra M, Gutierrez J, Byrd M, Kresta JY, Simbo S, Oliver J, and Greenwood M. A carbohydrate-restricted diet during resistance training promotes more favorable changes in body composition and markers of health in obese women with and without insulin resistance. *The Physician And Sportsmedicine* 39: 27-40, 2011.
- 26. Kwon HR, Han KA, Ku YH, Ahn HJ, Koo B-K, Kim HC, and Min KW. The effects of resistance training on muscle and body fat mass and muscle

strength in type 2 diabetic women. *Korean Diabetes Journal* 34: 101-110, 2010.

- 27. Lee JM and Lee H. Obesity Reduction Within a Generation: The Dual Roles of Prevention and Treatment. *Obesity* 19: 2107-2110, 2011.
- 28. Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, and Arslanian S. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. *Diabetes* 61: 2787-2795, 2012.
- 29. Marinik EL, Kelleher S, Savla J, Winett RA, and Davy BM. The Resist Diabetes trial: Rationale, design, and methods of a hybrid efficacy/effectiveness intervention trial for resistance training maintenance to improve glucose homeostasis in older prediabetic adults. *Contemporary clinical trials* 37: 19-32, 2013.
- 30. McGuigan MR, Tatasciore M, Newton RU, and Pettigrew S. Eight weeks of resistance training can significantly alter body composition in children who are overweight or obese. *J Strength Cond Res* 23: 80-85, 2009.
- 31. Nadeau KJ, Maahs DM, Daniels SR, and Eckel RH. Childhood obesity and cardiovascular disease: links and prevention strategies. *Nature Reviews Cardiology* 8: 513-525, 2011.
- 32. Nguyen HT, Markides KS, and Winkleby MA. Physician advice on exercise and diet in a U.S. sample of obese Mexican-American adults. *American Journal Of Health Promotion: AJHP* 25: 402-409, 2011.
- 33. Olson TP, Dengel DR, Leon AS, and Schmitz KH. Moderate Resistance Training and Vascular Health in Overweight Women. *Med Sci Sport Exer* 38: 1558-1564, 2006.
- 34. Olson TP, Dengel DR, Leon AS, and Schmitz KH. Changes in inflammatory biomarkers following one-year of moderate resistance training in overweight women. *International Journal Of Obesity* 31: 996-1003, 2007.
- 35. Phillips MD, Patrizi RM, Cheek DJ, Wooten JS, Barbee JJ, and Mitchell JB. Resistance training reduces subclinical inflammation in obese, postmenopausal women. *Med Sci Sports Exerc* 44: 2099-2110, 2012.
- 36. Roberts CK, Croymans DM, Aziz N, Butch AW, and Lee CC. Resistance training increases SHBG in overweight/obese, young men. *Metabolism* 62: 725-733, 2013.
- 37. Savage PA, Shaw AO, Miller MS, Vanburen P, Lewinter MM, Ades PA, and Toth MJ. Effect of Resistance Training on Physical Disability in Chronic Heart Failure. *Med Sci Sport Exer* 43: 1379-1386, 2011.
- 38. Schmitz KH, Hannan PJ, Stovitz SD, Bryan CJ, Warren M, and Jensen MD. Strength training and adiposity in premenopausal women: strong, healthy, and empowered study. *The American Journal Of Clinical Nutrition* 86: 566-572, 2007.
- 39. Schranz N, Tomkinson G, Parletta N, Petkov J, and Olds T. Can resistance training change the strength, body composition and self-concept of overweight and obese adolescent males? A randomised controlled trial. *Br J Sports Med*, 2013.
- 40. Shaibi GQ, Cruz ML, Ball GDC, Weigensberg MJ, Salem GJ, Crespo NC, and Goran MI. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males. *Med Sci Sport Exer* 38: 1208-1215, 2006.

- 41. Shaw I and Shaw BS. Consequence of resistance training on body composition and coronary artery disease risk. *Cardiovascular Journal Of South Africa* 17: 111-116, 2006.
- 42. Sorace P, Churilla JR, and Magyari PM. Resistance training for hypertension: Design Safe and Effective Programs. *ACSM's Health & Fitness Journal* 16: 13-18, 2012.
- 43. Thompson WR, Gordon NF, and Pescatello LS. *ACSM's Guidelines for Exercise Testing and Prescription.* Lippincott Williams & Wilkins, 2009.
- 44. Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, Houmard JA, and Kraus WE. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. *Journal of applied physiology* (*Bethesda, Md : 1985*) 113: 1831-1837, 2012.

Referencias totales / Total references: 44 (100%) Referencias propias de la revista / Journal's own references: 0 (0%)

Rev.int.med.cienc.act.fís.deporte- vol. X - número x - ISSN: 1577-0354