Wang Y et al. (2023) Clinical Utility of Automated Structural Brain Volume Analysis in MRI for Evaluating Temporal Lobe Epilepsy in Fitness Athletes. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte vol. 23 (91) pp. 82-118 **DOI:** https://doi.org/10.15366/rimcafd2023.91.006

ORIGINAL

Clinical Utility of Automated Structural Brain Volume Analysis in MRI for Evaluating Temporal Lobe Epilepsy in Fitness Athletes

Hanjiaerbieke Kukun, Wenxiao Jia, Fan Yang, Yunling Wang*

¹ Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, 137 South Liyushan Road, Xinshi District, Urumqi, Xinjiang, China. **E-mail:** hankpotter@126.com

UNESCO Code / UNESCO Code: Council of Europe classification / Council of Europe classification:

Recibido 05 de abril de 2022 Received April 05, 2022 Aceptado 06 de junio de 2023 Accepted June 06, 2023

ABSTRACT

Background: Investigating alterations in brain volumes among individuals with magnetic resonance-negative temporal lobe epilepsy (MRIn-MTLE) is of particular interest in the context of athletes and fitness enthusiasts. In this study, we aimed to examine these brain volume changes and their potential implications. Methods: We conducted a retrospective analysis of T1-weighted brain images from MRIn-MTLE patients and healthy controls (HC) who were actively engaged in athletics or fitness activities. Brain regions were segmented and quantified using Free Surfer software, and we compared the volumes of ipsilateral brain regions between patients and controls. We employed Feature Explorer software, based on Pyradiomics, to construct a classification model using volume parameters and assessed its effectiveness in distinguishing between MRIn-MTLE patients and controls. **Results:** Significant differences in brain volumes were observed in various regions of the brain, both on the left and right sides, among both HC and MRIn-MTLE patients. Notably, these differences varied by gender. In males, the estimated total intracranial volume (eTIV) and the volumes of specific regions in the left hemisphere were larger in the HC group than in the MRIn-MTLE group. In females, certain brain regions in the right hemisphere were smaller in MRIn-MTLE patients compared to the HC group. The classification model achieved an area under the curve (AUC) of 0.780 and an accuracy of 0.721. Conclusions: Our study identified notable reductions in brain volumes among MRIn-MTLE patients who are athletes or

fitness enthusiasts. Further investigations are needed to understand the underlying physiological and anatomical factors contributing to these differences. The findings suggest that brain volume measurements can serve as valuable features for constructing classification models to differentiate MRIn-MTLE patients from healthy individuals in the athletic and fitness community.

KEYWORDS: Athletes, Fitness Enthusiasts, Gender Differences, Neural Alterations, Neurological Studies

INTRODUCTION

Temporal lobe epilepsy (TLE) is a well-studied neurological condition that affects a substantial number of individuals, including athletes and fitness enthusiasts. In some cases, TLE can become medically refractory, prompting the need for diagnostic interventions and potential surgical treatments to manage seizures effectively(Balter, Lin, Leyden, Paul, & McDonald, 2019; Cendes, 2005). When diagnostic methods, like EEG (Electroencephalogram), identify abnormal discharges primarily originating from the mesial temporal lobe, individuals are often categorized as having mesial temporal lobe epilepsy (MTLE).

In these cases, surgical teams leverage cortical EEG for precise localization of abnormal discharges during resection surgery, allowing for extended resections when necessary to prevent residual epileptic activity. Collaborative decision-making teams frequently involve experts in MRI, PET-CT (Positron Emission Tomography Computer Tomography), and EEG to assess the extent of epileptogenic foci before surgery and provide real-time guidance during the procedure(Alvim et al., 2016; Berg et al., 2010).

However, approximately 25% of individuals with TLE, including athletes and fitness enthusiasts, present with no identifiable cause or clear epileptogenic focus through neuroimaging. This subgroup is categorized as having focal epilepsy of unknown origin, with those exhibiting mesial temporal lobe abnormal discharges termed magnetic resonance imaging-negative mesial temporal lobe epilepsy (MRIn-MTLE).

Unlike cases with identifiable epileptogenic foci on conventional MRI scans, MRIn-MTLE individuals lack specific regions that can be directly pinpointed. While PET and EEG may help identify affected brain lobes, they often fail to provide sufficient spatial resolution before surgery. Consequently, MRIn-MTLE individuals, including athletes and fitness enthusiasts, have fewer opportunities for surgical intervention, resulting in inadequate seizure control and limited clinical relief.(Englot, Konrad, & Morgan, 2016).

To address this diagnostic challenge within the athlete and fitness enthusiast population, the study explores alterations in brain volumes associated with MRIn-MTLE. Using T1-weighted magnetization prepared rapid gradient echo imaging (T1W-MPRAGE) scans of MRIn-MTLE individuals from this demographic and matched healthy controls, the study employs FreeSurfer software for automated segmentation of brain areas and structures. The study objectives include obtaining precise structural data for brain regions in MRIn-MTLE athletes and fitness enthusiasts as well as healthy individuals(Fischl, 2012).

Additionally, the study aims to analyze differences in brain structure between these groups and evaluate the utility of volumetric parameters for classification and diagnosis, ultimately enhancing our understanding of MRIn-MTLE within the athlete and fitness community.(Sáiz-Manzanares, Casanova, Lencastre, & Almeida, 2022).

1. Methods

1.1. Subjects

1.1.1. Patients with temporal lobe epilepsy and negative magnetic resonance imaging (MRIn-MTLE)

In our investigation, we conducted a retrospective analysis focused on athletes diagnosed with Magnetic Resonance-Negative Temporal Lobe Epilepsy (MRIn-MTLE) using the Picture Archiving and Communication System (PACS). The study encompassed athletes who had been seeking medical attention at our facility between January 2017 and December 2020. During this period, we collected vital data, including T1W-MPRAGE images and comprehensive information pertaining to these athletes.

Within our sports medicine center, we adhere to a standardized protocol when evaluating athletes with epilepsy-related concerns. This protocol encompasses the acquisition of T1W-MPRAGE images, utilization of the T2 CUBE FLAIR (fluid attenuated inversion recovery) protocol for assessing hippocampal signals, implementation of the T2 CUBE protocol for surgical guidance planning, evaluation of the affected brain region using the ASL (arterial spin labeling) protocol, performing PET-CT scans, and conducting long-range video electroencephalography (VEEG) monitoring.

It is worth noting that the identification of epileptogenic foci may occur before or after the MRI scan. As a result, we often integrate the results from PET-CT scans and VEEG monitoring, while simultaneously conducting segmentation and volume evaluation to assist in the interpretation of imaging data.

All athletes who conformed to our predefined inclusion and exclusion criteria were included in the MRIn-MTLE athlete group. The recruitment of

athletes for this study was carried out in collaboration with the Regional Collaborative Innovation Program of the Xinjiang Uygur Autonomous Region (Grant #2020E0275). It is important to note that this research project received approval from the Medical Research Ethics Board of the First Affiliated Hospital of Xinjiang Medical University. Additionally, all participating athletes provided written informed consent.

1.1.1.1. Inclusion criteria

Patients were included if they (1) met the epilepsy diagnostic criteria of the International League Against Epilepsy (2) underwent VEEG examination and exhibited a clear origin of abnormal discharges in the left temporal lobe, (3) had no clear epileptogenic focus identified by conventional MRI and 3D T2-weighted FLAIR sequences (including SPACE and CUBE) by two imaging physicians with more than 5 years of epilepsy diagnostic experience; and (4) had less than or equal to 2 antiepileptic drugs(AEDs).

1.1.1.2. Exclusion criteria

Participants were excluded if they (1) had absolute contraindications to MRI; (2) had a mental disorder or other neurological disease; (3) exhibited cognitive impairment; and (4) reported long-term use of medicines other than antiepileptic drugs. Additionally, (5) MTLE patients whose image quality did not satisfy the criteria were excluded.

1.1.2. Healthy controls

All healthy controls received information about registering and provided informed consent prior to receiving MRI. Only the following exclusion criteria were applied:

(1) presence of brain lesions, inflammation, hemorrhage, ischemia, or a related medical history; (2) long-term smoking, alcohol consumption, or substance abuse; (3) suspected or confirmed Alzheimer's disease, Parkinson's disease, or psychiatric disease; and (4) long-term medication use.

1.1.3. Participant demography information

A total of 376 HCs and 279 MRIn-MTLE patients with VEEG-confirmed left temporal lobe discharges and a mean illness duration of 452.5 months were recruited.

To account for the effects of sex and age, participants aged 18-60 years were randomly selected from the HC and MRIn-MTLE groups, resulting in a total of 190 subjects in the HC group (100 males and 90 females), and a total of 190 subjects in the MRIn-MTLE group (100 males and 90 females), as shown in Table 1.

SEX	HC GROUP ($\overline{x} \pm S$)	MRIN-MTLE GROUP ($\overline{x} \pm S$)	Τ	Р
Male	38.06±12.047 (N=100)	39.02±11.602 (N=100)	-0.574	0.567
Female	37.79±9.579 (N=90)	35.64±10.747 (N=90)	1.413	0.159
	37.93±10.92(N=190)	37.42±11.3(N=190)	0.448	0.655

 Table 1. Age and sex comparison of two groups (years)

1.2 Image capture and computerized analysis

1.2.1. MRI equipment and parameters

MRIn-MTLE patient images were acquired using a GE Signa Architect 3.0T (General Electric, United States); the protocol parameters are outlined below. To ensure image quality and reproducibility, the sequence parameters utilized in this study adhered to the sequence quality control process of the Enhancing Neuroimaging Genetics through Meta-Analysis Consortium 2020 initiative and utilized FreeSurfer-based segmentation of brain structures and hippocampal subregions (Fischl et al., 2002), with the following equipment models and parameters.

GE Signa Architect 3.0T scanner settings for T1-MPRAGE images: a 48channel head coil, voxel size = $1.0 \times 1.0 \times 1.0$ mm (isotropic), field of view = 256 mm (256 × 256 matrix), 156-layer axial position, slice thickness = 1 mm, phase encoding direction: anterior to posterior, readout direction: superior to inferior (3D encoding); repetition time = 6.4 ms (3.0 T), flip time = 1,000 ms (3.0 T).

1.2.2. Automated segmentation of brain regions

The preprocessed images were automatically segmented on a computer running Ubuntu 24.0 using FreeSurfer, an open-source software package developed by the Computational Neuroimaging Laboratory of the Athinoula A. Martinos Center for Biomedical Imaging. The program is publicly accessible at https://surfer.nmr.mgh.harvard.edu and is used for extensive analysis and display of structural and functional imaging data. The version utilized in this study was 7.1.1. (Released in May 2020). Freesurfer recommends T1W-MPRAGE as preferred imaging protocol.

The "recon-all" script allows FreeSurfer's segmentation procedure to be executed with a completely automated workflow, it contains more than 29 steps, the major steps are: 1) 2 steps of intensity normalization, to correct for fluctuations in intensity that would otherwise make intensity-based segmentation much more difficult, 2)computing the affine transform from the original volume to the MNI305 atlas using Avi Snyders 4dfp suite of image registration tools, 3)skull stripping, 4)B1 bias field correction, 5) gray-white matter segmentation, segmentation is performed using image intensity and

probability profiles and local spatial interactions between subcortical structures (Herman et al., 2016; Pitts, 2022), 6) labeling of regions on the cortical and subcortical surface, in this part we used Desikan-Killiany Atlas for labeling.

Further description of recon-all script was enumerated elsewhere. The processing of all T1W-MPRAGE brain volumes yielded a comprehensive morphometric description, and all volumes were utilized in training and testing of the classification model. FreeSurfer (version 7.1.1) image analysis software was used to perform cortical reconstruction and volume segmentation in the normalized space for each participant.

1.3. Volume-based diagnostic classification model

All HC and MRIn-MTLE patients' age, and volume of Freesurfer volume segmentation results were used as classification variables for model training. Since the patients could not tolerate too long scans, the patients' scans were mainly T1-MPRAGE, and also the volume segmentation results were interpretable and helped the interpretation of the results of the classification model outputs, only the segmentation results of T1W-MPRAGE were included as classification variables.

For the classification model based on all participants, the training dataset consisted of 393 cases (167 positive/226 negative), an additional 262 cases were chosen as an independent validation dataset (112 positive/150 negative). For the classification model based on male participants, the training dataset consisted of 120 cases (60 positive/60 negative), an additional 80 cases were chosen as an independent validation dataset (40 positive/40 negative).

For the classification model based on female participants, the training dataset consisted of 108 cases (54 positive/54 negative), an additional 72 cases were chosen as an independent validation dataset (36 positive/36 negative). Each case had 70 features including age and brain subregion volumes of both hemispheres. The model based on different classifier was trained and tested with follow steps.

1.3.1 Data balancing

We repeatedly entered positive and negative samples out of datasets into randomly selected cases, to alleviate data imbalance.

1.3.2 Matric normalization

As the mean and standard deviation for each feature vector were determined before training, each feature vector was subtracted from the mean and then divided by the standard deviation. Each vector was centered at zero after normalization, and the standard deviation is expressed in units. Due to the high dimensionality of the feature space, only each pair of features was compared. If the classification accuracy (Pearson correlation coefficient value, PCC)of a pair of features was above the threshold, one of them was eliminated. Following this procedure, the dimensionality of the feature space was reduced, resulting in a set of distinct features.

1.3.3. Feature selection

Recursive feature elimination (RFE) was used to select features prior to model construction. The RFE approach selects features based on the classifier by iteratively evaluating a reduced set of features.

1.3.4. Cross-validation and Classifier evaluation

In the training dataset, five-fold cross-validations were carried out to identify the model's hyper parameters (e.g., the number of features). We divided the training set into 5 subsets randomly and equally and used each subset as the validation set and the other 4 subsets as the training set, respectively, and run the modeling process 5 times. The hyper parameters were determined based on the model's performance on the validation dataset. We employed support vector machine, logistic regression, random forest for model training and testing, the evaluation of the performance of models on the classification task based on each classifier was according to the receiver operating characteristic (ROC) curve. For quantification, the area under the ROC curve (the AUC) was computed.

At the cutoff value that optimized, the Youden index, the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed. A total of 1,000 bootstrap samples were used to calculate 95% confidence intervals. All of the aforementioned procedures were implemented using Python (3.7.6) and the Feature Explorer Pro (FAEPro, version 0.4.3) program (Jones & Cascino, 2016).

1.4. Statistical analysis

Since the differences in brain structure volumes between MRIn-MTLE patients and healthy controls have been little reported in previous studies, we conducted an exploratory comparative analysis of structural brain volumes in patients and healthy controls by gender. In order to understand the differences in structural brain volumes between genders in the healthy population, we also performed a comparative analysis of structural brain volumes in healthy controls by gender. In addition, our pretest suggested that the changes in brain structural volume were different between male and female MRIn-MTLE patients, so we also performed a comparative analysis of brain structural volume in patients of different genders. All comparison above used independent samples t-tests on SPSS 19.0.

2. Results

2.1 Analysis of sub regional brain volume differences

Desikan-Killiany Atlas-based segmentation of brain structures was used to obtain the volumes of 33 brain regions in each of the bilateral hemispheres. After comparison and statistical analysis, we determined that the mean estimated total intracranial volume(eTIV) of the HC group was larger than MRIn-MTLE group (1469993.59 \pm 169968.81 mm³ vs 1411306.37 \pm 198446.73 mm³, *P*=0.002). Volumes of left caudal middle frontal gyrus, left pars opercularis gyrus, left superior frontal gyrus, left precentral gyrus, right caudal middle frontal gyrus, right precentral gyrus, right cuneus, right posterior cingulate gyrus, right entorhinal cortex was larger in HC group than MRIn-MTLE group(*P*<0.05) (Table 2).

				· · · ·	•				
STRUCTUR	НС	MRIN-	Τ	Ρ	STRUCT	НС	MRIN-	Τ	Ρ
E	GROUP (\overline{x}	MTLE			URE	GROUP	MTLE		
	±S)	GROU				$(\overline{x} \pm S)$	GROU		
		P ($\overline{x} \pm$					P ($\overline{x} \pm$		
		S)					S)		
*lh_caudal	6211.26±1	5777.2	3.4	0.00	**rh_caud	6042.31±	5691.9	2.6	0.0
middlefront	213.25	4±125	27	1	almiddlefr	1300.68	7±129	29	09
al		4.99			ontal**		7.28		
lh_parsoper	4600.46±9	4364.9	2.4	0.01	rh_prece	13148.97	12596.	2.4	0.0
cularis	11.06	3±937.	84	3	ntral	±2070.06	15±22	71	14
		01					86.09		
Ih_superiorf	22435.82±	21598.	2.3	0.01	rh_cuneu	3446.98±	3270.5	2.4	0.0
rontal	3153.85	4±364	96	7	S	655.28	3±754.	34	15
		2.69					69		
Ih_precentr	13377.17±	12884.	2.1	0.03	rh_poster	3094.11±6	2938.5	2.2	0.0
al	1854.21	21±24	85		iorcingula	83.58	6±685.	15	27
		96.43			te		3		
lh_rostralmi	15597.85±	15104.	1.8	0.06	rh_entorh	1829.95±	1720±	2.1	0.0
ddlefrontal	2559.49	47±26	49	5	inal	498.31	479.38	92	29
		41.75							
Ih_inferiorte	11516.53±	11129.	1.6	0.09	rh_precu	9868.81±	9511.8	1.9	0.0
mporal	2134	86±23	95	1	neus	1710.48	1±182	67	5
		08.53					5.51		
Ih_parstrian	3641.04±6	3526.8	1.6	0.10	rh_fusifor	9083.78±	8776.7	1.7	0.0
gularis	92.53	1±679.	23	5	m	1660.99	8±183	12	88
		57					0.52		

 Table2(a): Brain structure volume comparison between HC group and MRIn-MTLE

 group(mm³)

STRUCTUR E	HC GROUP (\bar{x} ± S)	MRIN- MTLE GROU P (x ± S)	Τ	Ρ	STRUCT URE	HC GROUP $(\overline{x} \pm S)$	MRIN- MTLE GROU P ($\overline{x} \pm$ S)	Τ	P
Ih_posterior	3089.24±6	2982.5	1.5	0.13	rh_lateral	7298.63±	7487.2	-	0.1
cingulate	02.18	3±769.	05	3	orbitofron	1005.56	±1225.	1.6	02
		57			tal		13	4	
lh_rostralan	2462.91±5	2554.9	-	0.14	rh_superi	21406.01	20859.	1.5	0.1
teriorcingul	88	3±624.	1.4		orfrontal	±3080.16	43±35	96	11
ate		27	79				76.52		
Ih_lateraloc	12194.55±	12509.	-	0.16	rh_frontal	1308.01±	1345.3	-	0.1
cipital	1928.57	45±24	1.4		pole	248.29	6±300.	1.3	88
		01.67	09				82	2	
lh_frontalpo	1085.81±1	1115.1	-	0.18	rh_lateral	12302.72	12590.	-	0.2
le	91.36	1±232.	1.3	1	occipital	±2055.08	24±24	1.2	14
		8	4				33.11	44	
Ih_superior	12994.68±	13217.	-	0.32	rh_isthmu	2417.99±	2339.9	1.2	0.2
parietal	1946.99	77±24	0.9	2	scingulat	539.89	8±680.	38	17
		15.94	91		е		5		
Ih_postcent	9669.83±1	9512.2	0.9	0.33	rh_parso	3824.82±	3728.1	1.2	0.2
ral	440.19	5±171	72	2	percularis	681.5	±877.3		31
		0.02					1		
Ih_inferiorp	12161.1±1	12369.	-	0.36	rh_tempo	2612.39±	2543.6	1.1	0.2
arietal	964.76	44±24	0.9	6	ralpole	513.18	±620.3	78	4
		90.25	05				6		
Ih_fusiform	9293.92±1	9158.7	0.7	0.43	rh_lingual	6849.39±	6669.9	1.1	0.2
	598.86	1±179	75	9		1455.03	9±157	52	5
		6.83					9.06		
Ih_superiort	12107.49±	11929.	0.7	0.46	rh_parsor	2815.97±	2862.6	-	0.3
emporal	2116.36	59±26	3	6	bitalis	454.6	9±536.	0.9	6
		10.2					77	16	
Ih_paracent	3492.09±5	3450.4	0.6	0.5	rh_inferio	11080.82±	10895.	0.8	0.3
ral	39.41	6±657.	75		rtemporal	1977.54	41±22	61	9
		56					11.52		
Ih_medialor	5491.34±7	5438.6	0.6	0.51	rh_parahi	1820.42±	1785.3	0.8	0.4
bitofrontal	13.13	4±839.	6		ppocamp	347.95	2±465.	32	06
		54			al		93		
lh_isthmusc	2595.64±5	2552.7	0.6	0.51	rh_transv	893.38±1	875.91	0.8	0.4
ingulate	22.97	6±743.	5	6	ersetemp	90.95	±230.6	04	22
		78			oral		6		

 Table2(b): Brain structure volume comparison between HC group and MRIn-MTLE

 group(mm³)

STRUCTUR E	HC GROUP (\overline{x} ± S)	MRIN- MTLE GROU P $(\bar{x} \pm$	Т	P	STRUCT URE	HC GROUP $(\overline{x} \pm S)$	MRIN- MTLE GROU P $(\overline{x} \pm$	Τ	Ρ
		3)		0.54		5740 45	5)		<u> </u>
in_paranipp	2029.06±3	2000.5	0.6	0.51	rn_mediai	5/48.45±	5818.6	-	0.4
ocampal	66.35	2±485.	47	8	orbitofron	790.25	5±924.	0.7	27
		73			tal		13	96	
Ih_middlete	10771.78±	10614.	0.6	0.52	rh_postce	9309.09±	9195.6	0.6	0.4
mporal	2294.63	79±24	4	3	ntral	1506.17	2±167	94	88
		83.52					7.52		
Ih_cuneus	3083.04±6	3043.6	0.5	0.55	rh_rostral	1837.59±	1806.0	0.6	0.5
	11.11	4±696.	86	8	anteriorci	484.04	3±502.	23	33
		04			ngulate		96		
lh_transver	1202.35±2	1185.7	0.5	0.57	rh_middle	11815.96±	11668.	0.5	0.5
setemporal	62.02	±315.9	59	6	temporal	2224.82	03±26	91	55
		5					39.22		
Ih_lingual	6294.47±1	6364.6	-	0.62	rh_insula	6844.95±	6892.2	-	0.6
	366.68	5±141	0.4	4		929.87	2±109	0.4	51
		9.69	91				5.31	53	
Ih_temporal	2583.44±4	2559.5	0.4	0.64	rh_caudal	1869.75±	1844.0	0.4	0.6
pole	62.97	4±542.	62	4	anteriorci	562.2	4±548.	51	52
		12			ngulate		03		
Ih_entorhin	1838.03±4	1859.0	-	0.66	rh_parac	3858.65±	3840.7	0.2	0.8
al	44.33	4±499.	0.4	5	entral	628.27	9±750.	51	02
		23	33				81		
lh_insula	6942.18±8	6974.0	-	0.73	rh_inferio	14711.38±	14655.	0.2	0.8
	71.65	3±956.	0.3	5	rparietal	2527.41	93±28	02	4
		81	39				06.45		
lh_pericalca	2040.12±4	2024.9	0.3	0.76	rh_superi	12677.07	12642.	0.1	0.8
rine	78.37	8±505.		4	orparietal	±1912.08	49±23	58	75
		77					37.33		
Ih_parsorbit	2346.14±3	2353.3	-	0.85	rh_perical	2322.37±	2315.5	0.1	0.9
alis	86.23	3±401.	0.1	9	carine	519.65	3±604.	18	06
		58	78				81		
lh_caudalan	1555.81±4	1550.9	0.0	0.92	rh_rostral	16001.27	15966.	0.1	0.9
teriorcingul	37.98	2±518.	99	1	middlefro	±2846.94	83±30	13	1
ate		07			ntal		91.21		
Ih_lateralor	7484.83±9	7494.8	-	0.92	rh_superi	11557.65±	11531.	0.1	0.9
bitofrontal	32.26	5±107	0.0	3	ortempor	2033.44	66±24	13	1
		2.72	97		al		36.62		

 Table2(c): Brain structure volume comparison between HC group and MRIn-MTLE

 group(mm³)

STRUCTUR E	HC GROUP (\overline{x} ± S)	MRIN- MTLE GROU P $(\bar{x} \pm$ S)	Τ	Ρ	STRUCT URE	HC GROUP (x̄±S)	MRIN- MTLE GROU P $(\bar{x} \pm$ S)	Τ	Ρ
lh_suprama rginal	11189.78± 2102.32	11169. 78±24 77.48	0.0 85	0.93 2	rh_parstri angularis	4308.67± 861.76	4310.8 4±982. 33	- 0.0 23	0.9 82
lh_precune us	9452.32±1 508.67	9446.1 8±186 3.95	0.0 35	0.97 2	rh_supra marginal	9606.74± 1872.25	9608.6 4±218 4.23	- 0.0 09	0.9 93
Brain Volume Without Ventricles	1123787.3 6±123038. 06	111213 0.07±1 26810. 26	0.9 09	0.36 4	Estimate d total intracrani al volume	1469993. 59±16996 8.81	141130 6.37±1 98446. 73	3.0 96	0.0 02

Table2(d): Brain structure volume comparison between HC group and MRIn-MTLE group(mm³)

* Ih= left hemisphere; ** rh=right hemisphere

2.2. Comparison of brain subregion volume differences between male and female healthy controls

Female healthy controls eTIV was smaller than male $(1399306.99\pm159346.34 \text{ vs } 1533611.52\pm153933.48, P<0.001)$. 25/33 left hemisphere subregions and 21/33 right hemisphere subregions were smaller than male(P<0.05) (Table 3).

 Table 3(a): Brain structure volume comparison between males and females in HC group

 (mm³)

Structure	Female	Male	Τ	Ρ	Structure	Female	Male	Τ	Ρ			
*lh_lateralo	11309.36	12991.23	-	0	**rh_inferi	13941.18	15404.57	-	0			
ccipital	±1734.54	±1744.26	6.654		orparietal	±2116.25	±2672.86	4.153				
Ih_medialor	5200.97±	5752.68±	-5.76	0	rh_lateralo	11468.47	13053.55	-5.74	0			
bitofrontal	589.81	715.9			ccipital	±1877.62	±1921.27					
lh_rostralmi	14634.34	16465.01	-	0	rh_lateralo	6997.49±	7569.66±	-	0			
ddlefrontal	±1981.27	±2715.51	5.344		rbitofrontal	782.23	1106.2	4.147				
lh_insula	6625.83±	7226.9±9	-	0	rh_medial	5472.04±	5997.21±	-	0			
	721.19	00.01	5.043		orbitofront	636.64	834.2	4.837				
					al							
Ih_parsoper	4306.07±	4865.41±	-	0	rh_middlet	11127.3±	12435.75	-	0			
cularis	736.73	973.11	4.493		emporal	2068.34	±2187.38	4.224				

				(mm³)					
lh_parstrian	3424.08	3836.31±	-	0	rh_precun	9366.6±13	10320.8±	-	0
gularis	±541.74	755.29	4.3		eus	67.73	1862.3	3.9	
			54					88	
Ih_inferiorte	10853.7	12113.04	-	0	rh_rostrala	1708.4±40	1953.87±	-	0
mporal	3±1767.	±2263.96	4.2		nteriorcing	6.81	519.3	3.6	
	85		95		ulate			45	
Ih_rostralant	2281.73	2625.96±	-	0	rh_rostral	15190.54±	16730.93	-	0
eriorcingulat	±488.02	623.91	4.2		middlefront	2323.68	±3079.59	3.8	
e			57		al			58	
Ih_fusiform	8811.89	9727.75±	-	0	rh_frontalp	1235.74±2	1373.05±	-	0
	±1369.8	1670.95	4.1		ole	08.18	264.02	3.9	
	2		04					5	
Ih_middlete	10083.6	11391.08	-	0	rh_insula	6572.34±7	7090.29±	-	0
mporal	8±1978.	±2390.42	4.0			70.12	994.58	3.9	
	77		81					81	
lh_superiorfr	21504.7	23273.74	-	0	rh_fusiform	8664.69±1	9460.97±	-	0.
ontal	9±2708.	±3301.28	4.0			323.74	1840.73	3.4	0
	24		53					47	0
									1
Ih_lateralorb	7207.86	7734.11±	-	0	rh_parsorb	2702.77±3	2917.85±	-	0.
itofrontal	±771.71	995.65	4.0		italis	59.23	506.35	3.4	0
			39					02	0
									1
Ih_parsorbit	2236.18	2445.1±4	-	0	rh_superio	20656±26	22081.01	-3.3	0.
alis	±333.55	04.82	3.8		rfrontal	64.11	±3280.26		0
			57						0
									1
lh_inferiorpa	11629.4	12639.57	-	0	rh_cuneus	3299.47±6	3579.75±	-	0.
rietal	7±1867.	±1935.09	3.6			28.09	653.83	3.0	0
	98		52					06	0
									3
lh_precuneu	9077.86	9789.33±	-	0.	rh_inferiort	10630.52±	11486.08	-	0.
S	±1258.6	1636.71	3.3	0	emporal	1674.13	±2143.82	3.0	0
	8		31	0				42	0
				1					3
Ih_frontalpol	1038.5±	1128.38±	-	0.	rh_superio	11092.18±	11976.58	-	0.
е	170.31	199.92	3.3	0	rtemporal	1723.34	±2202.2	3.0	0
			17	0				59	0
				1					3

Table 3(b): Brain structure volume comparison between males and females in HC group

Rev.int.med.cienc.act.fis.deporte - vol. 23 - número 91 - ISSN: 1577-0354

				(mm³)						
Structure	Female	Male	Τ	Ρ	Structure	Female	Male	Τ	Ρ	
Ih_isthmusci	2468.92	2709.68±	-	0.	rh_lingual	6536.11±1	7131.34±	-	0.	
ngulate	±439.49	566.34	3.2	0		279.53	1549.32	2.8	0	
			48	0				69	0	
				1					5	
lh_cuneus	2939.39	3212.32±	-	0.	rh_parstria	4128.34±7	4470.97±	-	0.	
	±567	623.14	3.1	0	ngularis	05.46	956.12	2.7	0	
			45	0				85	0	
				2					6	
Ih_lingual	6003.23	6556.59±	-	0.	rh_postcen	9028.2±14	9561.9±1	-	0.	
	±1259.8	1411.51	2.8	0	tral	61.39	508.2	2.4	0	
	9		38	0				71	1	
				5					4	
Ih_superiort	11665.3	12505.46	-	0.	rh_caudala	1769.07±4	1960.37±	-	0.	
emporal	1±1929.	±2205.72	2.7	0	nteriorcing	90.08	608.25	2.3	0	
	77		8	0	ulate			97	1	
				6					8	
Ih_posterior	2967.89	3198.46±	-	0.	rh_superio	12334.27±	12985.59	-	0.	
cingulate	±523.5	648.43	2.6	0	rparietal	1620.42	±2101.48	2.3	0	
			78	0				73	1	
				8					9	
lh_entorhina	1754.34	1913.34±	-	0.	rh_parsop	3725.13±5	3914.54±	-	0.	
I	±357.01	500.23	2.4	0	ercularis	63.15	764.45	1.9	0	
			97	1				57	5	
				3					2	
lh_supramar	10805.4	11535.72	-	0.	rh_parace	3770.19±5	3938.26±	-	0.	
ginal	1±1837.	±2268.98	2.4	0	ntral	52.61	682.29	1.8	0	
	16		21	1				53	6	
				6					5	
Ih_postcentr	9431.94	9883.92±	-	0.	rh_isthmus	2345.24±3	2483.47±	-	0.	
al	±1269.9	1553.13	2.1	0	cingulate	82.39	644.88	1.8	0	
			81	3				18	7	
									1	
lh_caudalmi	6029.09	6375.22±	-	0.	rh_entorhi	1770.98±4	1883.02±	-	0.	
ddlefrontal	±1017.4	1349.9	1.9	0	nal	44.16	539.15	1.5	1	
	2		79	4				69	1	
				9					8	
Ih_precentra	13127.5	13601.84	-	0.	rh_posterio	3015.63±5	3164.73±	-	0.	
I	4±1859.	±1829.32	1.7	0	rcingulate	79.26	761.44	1.5	1	
	83		7	7				06	3	
				8					4	

Table 3(c): Brain structure volume comparison between males and females in HC group

Structure	Female	Male	Τ	Ρ	Structure	Female	Male	Τ	Ρ
Ih_paracentr	3426.71	3550.93±	-	0.	rh_supram	9399.63±1	9793.13±	-	0.
al	±493.36	573.83	1.5	11	arginal	770.86	1949.03	1.4	1
			91	3				51	4
									9
lh_pericalcar	1986.61	2088.28±	-	0.	rh_pericalc	2271.1±52	2368.51±	-	0.
ine	±461.88	490.04	1.4	1	arine	7.56	510.67	1.2	1
			67	4				92	9
				4					8
Ih_temporal	2540.12	2622.42±	-	0.	rh_precent	12955.14±	13323.41	-	0.
pole	±417.13	499.53	1.2	2	ral	1874.09	±2226.76	1.2	2
			25	2				26	2
				2					2
lh_transvers	1177.96	1224.31±	-	0.	rh_parahip	1794.66±2	1843.6±3	-	0.
etemporal	±229.12	287.82	1.2	2	pocampal	81.7	98.31	0.9	3
			19	2				68	3
				4					4
Ih_superiorp	12894.1	13085.18	-	0.	rh_transve	881.28±16	904.27±2	-	0.
arietal	3±1755.	±2109.06	0.6	5	rsetempor	9.03	08.98	0.8	4
	77		74	0	al			28	0
				1					9
lh_parahipp	2013.28	2043.27±	-	0.	rh_caudal	5979±958.	6099.28±	-	0.
ocampal	±413.96	318.96	0.5	5	middlefront	6	1548.13	0.6	5
			62	7	al			51	1
				4					6
lh_caudalant	1539.14	1570.8±4	-	0.	rh_tempor	2591.56±4	2631.14±	-	0.
eriorcingulat	±410.75	62.67	0.4	6	alpole	09.05	592.95	0.5	5
e			96	2				4	9
BrainVolume	107368	1168877.	-	0	Estimated	1399306.9	1533611.	-	0
WithoutVentr	7.53±10	2±12368	5.7		TotalIntraC	9±159346.	52±1539	5.9	
icles	1530.98	4.28	6		ranialVol	34	33.48	06	

Table 3(d): Brain structure volume comparison between males and females in HC group

(mm³)

* Ih= left hemisphere; ** rh=right hemisphere

2.3. Comparison of brain subregion volume differences between male and female MRIn-MTLE group

Female healthy controls eTIV was smaller than male $(1340873.07\pm173887.29 \text{ vs } 1474696.34\pm198571.91, P<0.001)$. 29/33 left hemisphere subregions and 28/33 right hemisphere subregions were smaller than male(P<0.05) (Table 4).

STRUCTURE	FEMALE	MALE	Т	Ρ	STRUCTU	FEMALE	MALE	t	Ρ
	0044.00	0050.04				0070.04	0004.07		•
In_cuneus	2811.89±	3252.21±	-	0	rn_fusifor	8278.91±	9224.87	-	0
	599.46	713.5	4.5		m	1729.35	±1811.1	3.6	
			78				5	72	
Ih_fusiform	8585.18±	9674.89±	-	0	rh_inferior	13867.58	15365.4	-	0
	1614.02	1803.77	4.3		parietal	±2204.01	4±3097.	3.8	
			69				71	68	
Ih_inferiorte	10426.56	11762.83	-	0	rh_inferiort	9965.03±	11732.7	-	0
mporal	±2041.82	±2360.47	4.1		emporal	1893.71	4±2148.	5.9	
			51				96	87	
lh_isthmusci	2329.27±	2753.9±7	-	0	rh_isthmu	2129.26±	2529.63	-	0
ngulate	702.42	25.46	4.0		scingulate	613.96	±684.46	4.2	
			89					26	
Ih_lateralocc	11653.64	13279.68	-	0	rh_lateralo	11571.42	13507.1	-	0
ipital	±2192.42	±2329.26	4.9		ccipital	±1887.17	8±2511.	6.0	
			4				44	42	
Ih_postcentr	9031.86±	9944.61±	-	0	rh_lateralo	7101.72±	7834.13	-	0
al	1395.52	1852.86	3.8		rbitofrontal	1117.48	±1219.0	4.3	
			58				8	01	
lh_precuneu	8899.33±	9938.35±	-	0	rh_middlet	10708.57	12531.5	-	0
s	1512.01	2015.19	4.0		emporal	±2568.39	4±2403.	5.0	
			44				62	53	
lh_insula	6676.59±	7241.72±	-	0	rh_postce	8753.64±	9593.4±	-	0
	795.73	1012.77	4.2		ntral	1421.65	1793.87	3.5	
			44					93	
Ih_entorhina	1735.49±	1970.23±	-	0.	rh_insula	6575.73±	7179.94	-	0
I	497.14	476.71	3.3	00		988.54	±1112.83	3.9	
			21	1				3	
Ih_lateralorb	7228.41±	7734.65±	-	0.	rh_cuneus	3076.84±	3444.85	-	0.
itofrontal	878	1175.24	3.3	00		654.93	±798.08	3.4	0
			84	1				52	0
									1
Ih_lingual	6012.51±	6681.58±	-	0.	rh_medial	5582.57±	6031.12	-	0.
	1298.79	1455.05	3.3	00	orbitofront	760.21	±1007.2	3.4	0
			29	1	al		7	35	0
									1
Ih pericalca	1899.02±	2138.34±	-	0.	rh posteri	2759.93±	3099.33	_	0.
rine	435.08	539.24	3.3	00	orcinqulat	637.84	±689.71	3.5	0
			81	1	e			09	0
			01	•	-				1

 Table 4(a): Brain structure volume comparison between males and females in MRIn-MTLE
 group (mm³)

			0	• •	,				
STRUCTURE	FEMALE	MALE	Т	Ρ	STRUCTU	FEMALE	MALE	t	Ρ
					RE				
Ih_rostralant	2394.81±	2699.04±	-	0.	rh_lingual	6304.64±	6998.8±	-	0.
eriorcingulat	543.17	659.16	3.4	00		1387.27	1673.17	3.0	0
е			49	1				93	0
									2
Ih superiort	11280.78	12513.52	-	0.	rh tempor	2399.99±	2672.85	-	0.
emporal	±2258.52	±2773.83	3.3	00	alpole	579.1	±630.56	3.0	0
•			36	1	,			95	0
									2
lh_supramar	10541.92	11734.86	-	0.	rh superio	10982.01	12026.3	-	0.
ginal	±2120.87	±2644.47	3.4	00	rtemporal	±2136.34	4±2590.	3.0	0
C			06	1	•		31	12	0
									3
Ih_temporal	2418.3±5	2686.65±	-	0.	rh_perical	2181.9±5	2435.8±	-	0.
pole	61.82	492.81	3.5	00	carine	24.98	647.85	2.9	0
			07	1				47	0
									4
Ih_medialor	5244.47±	5613.39±	-	0.	rh_parsorb	2747.33±	2966.51	-	0.
bitofrontal	710.08	909.48	3.0	00	italis	494.82	±554.03	2.8	0
			92	2				63	0
									5
Ih_middlete	10040.1±	11132.01	-	0.	rh_rostrala	1700.02±	1901.44	-	0.
mporal	2346.54	±2500.89	3.0	00	nteriorcing	449.19	±531.17	2.8	0
			94	2	ulate			06	0
									6
lh_parahipp	1894.03±	2096.36±	-	0.	rh_rostral	15345.51	16526.0	-	0.
ocampal	443.7	503.84	2.9	00	middlefron	±2324.21	2±3566.	2.7	0
			24	4	tal		43	28	0
									7
lh_inferiorpa	11853.74	12833.56	-	0.	rh_caudal	1734.06±	1943.02	-	0.
rietal	±1979.85	±2802.81	2.8	00	anteriorcin	500.62	±571.99	2.6	0
			04	6	gulate			66	0
									8
Ih_precentra	12385.34	13333.19	-	0.	rh_precun	9148.5±1	9838.78	-	0.
I	±2227.02	±2647.5	2.6	00	eus	496.96	±2029.6	2.6	0
			55	9			6	85	0
									8
Ih_superiorp	12755.81	13633.54	-	0.	rh_transve	830.28±2	916.97±	-	0.
arietal	±1985.84	±2688.69	2.5	01	rsetempor	21.07	232.46	2.6	0
			76	1	al			27	0
									9

 Table 4(b): Brain structure volume comparison between males and females in MRIn-MTLE

 group (mm³)

STRUCTURE	FEMALE	MALE	Т	Ρ	STRUCTU RE	FEMALE	MALE	t	Ρ
Ih_parstrian	3398.57±	3642.22±	-	0.	rh_caudal	5441.88±	5917.05	-	0.
gularis	579.82	742.3	2.5	01	middlefron	1113.23	±1410.9	2.5	0
			02	3	tal		4	58	11
Ih_transvers	1128.67±	1237.03±	-	0.	rh_parsop	3562.44±	3877.19	-	0.
etemporal	270.37	345.31	2.4	01	ercularis	765.9	±945.85	2.5	0
			2	6				03	1
									3
Ih_posterior	2842.04±	3108.97±	-	0.	rh_parstria	4127.79±	4475.59	-	0.
cingulate	795.01	726.88	2.4	01	ngularis	935.57	±998.73	2.4	0
			18	7				69	1
									4
Ih_superiorf	20956.86	22175.79	-	0.	rh_precent	12178.48	12972.0	-	0.
rontal	±3295.47	±3854.62	2.3	02	ral	±2156.11	5±2344.	2.4	0
			3	1			52	2	1
									6
lh_rostralmi	14699.38	15469.06	-	0.	rh_entorhi	1644.94±	1787.55	-	0.
ddlefrontal	±1909.21	±3124.56	2.0	04	nal	360.07	±558.96	2.1	0
			71					11	3
									6
lh_caudalant	1470.83±	1622.99±	-	0.	rh_parahip	1711.06±	1852.15	-	0.
eriorcingulat	490.64	533.76	2.0	04	pocampal	385.98	±520.56	2.1	0
е			38	3				03	3
									7
lh_caudalmi	5585.6±1	5949.72±	-	0.	rh_superio	20354.34	21314.0	-	0.
ddlefrontal	056.4	1392.88	2.0	04	rfrontal	±3221.42	1±3827.	1.8	0
			13	6			55	59	6
									5
lh_parsoper	4233.1±8	4483.58±	-	0.	rh_supram	9313.26±	9874.48	-	0.
cularis	45.92	1001.43	1.8	06	arginal	2030.78	±2291.2	1.7	0
			52	6			4	79	7
									7
Ih_paracentr	3385.7±5	3508.75±	-	0.	rh_frontalp	1310.51±	1376.73	-	0.
al	99.66	703.52	1.2	19	ole	294.25	±304.68	1.5	1
			9	9				2	3
lh_frontalpol	1092.61±	1135.36±	-	0.	rh_parace	3774.6±8	3900.37	-	0.
е	254.35	210.78	1.2	20	ntral	65.33	±628.84	1.1	2
			66	7				54	5

 Table 4(c): Brain structure volume comparison between males and females in MRIn-MTLE
 group (mm³)

STRUCTURE	FEMALE	MALE	Т	Ρ	STRUCTU	FEMALE	MALE	t	Ρ
					RE				
Ih_parsorbit	2334.27±	2370.49±	-	0.	rh_superio	12555.27	12720.9	-	0.
alis	365.08	432.93	0.6	53	rparietal	±2045.07	9±2580.	0.4	6
			2	6			03	93	2
									3
BrainVolume	1067605.	1152202.	-	0	Estimated	1340873.	1474696	-	0
WithoutVent	02±10111	61±13447	4.9		TotalIntraC	07±17388	.34±198	4.9	
ricles	7.49	5.15	3		ranialVol	7.29	571.91	18	
BrainVolume WithoutVent ricles	1067605. 02±10111 7.49	1152202. 61±13447 5.15	- 4.9 3	0	Estimated TotalIntraC ranialVol	1340873. 07±17388 7.29	1474696 .34±198 571.91	- 4.9 18	0

 Table 4(d): Brain structure volume comparison between males and females in MRIn-MTLE

 group (mm³)

2.4 Comparison of male differences in brain subregion volume between the groups

The eTIV and volumes of left pars opercularis gyrus, left rostral middle frontal gyrus, left caudal middle frontal gyrus, left superior frontal gyrus were larger in HC group than in MRIn-MTLE group (P<0.05), differences of the other brain structure volumes between two groups were statistically insignificant(P>0.05) (Table 5; Figure 1A).

Figure 1: Differences in brain region volumes in the two groups: A) in males; B) in females (mm³)

STRUCTU	НС	MRIN-MTLE	Τ	Ρ	STRUCTU	НС	MRIN-MTLE	Τ	Ρ
RE	GROUP	GROUP (\overline{x}			RE	GROUP	GROUP ($\overline{x} \pm$		
	$(\overline{x} \pm S)$	±S)				$(\overline{x} \pm S)$	S)		
*lh_parsop	4865.41	4483.58±10	2.	0.	**rh_precun	10320.8	9838.78±202	1.	0.
ercularis	±973.11	01.43	7	0	eus	±1862.3	9.66	7	0
			3	0				5	8
			4	7					2
lh_rostral	16465.0	15469.06±3	2.	0.	rh_lateralor	7569.66	7834.13±121	-	0.
middlefron	1±2715.	124.56	4	0	bitofrontal	±1106.2	9.08	1.	1
tal	51		0	1				6	1
			6	7				0	
								7	
lh_caudal	6375.22	5949.72±13	2.	0.	rh_superiorf	22081.0	21314.01±38	1.	0.
middlefron	±1349.9	92.88	1	0	rontal	1±3280.	27.55	5	1
tal			9	2		26		2	3
			4	9				2	
lh_superio	23273.7	22175.79±3	2.	0.	rh_lateraloc	13053.5	13507.18±25	-	0.
rfrontal	4±3301.	854.62	1	0	cipital	5±1921.	11.44	1.	1
	28		6	3		27		4	5
			3	2				3	3
								5	
lh_parstria	3836.31	3642.22±74	1.	0.	rh_cuneus	3579.75	3444.85±798	1.	0.
ngularis	±755.29	2.3	8	0		±653.83	.08	3	1
			3	6				0	9
			3	8				8	3
lh_superio	13085.1	13633.54±2	-	0.	rh_entorhin	1883.02	1787.55±558	1.	0.
rparietal	8±2109.	688.69	1.	1	al	±539.15	.96	2	2
	06		6	1				2	2
			0					9	
			5						
lh_parsorb	2445.1±	2370.49±43	1.	0.	rh_precentr	13323.4	12972.05±23	1.	0.
italis	404.82	2.93	2	2	al	1±2226.	44.52	0	2
			5	1		76		8	7
			9					7	9
Ih_medialo	5752.68	5613.39±90	1.	0.	rh_fusiform	9460.97	9224.87±181	0.	0.
rbitofronta	±715.9	9.48	2	2		±1840.7	1.15	9	3
I			0	3		3		1	6
			3					4	2
Ih_inferiort	12113.0	11762.83±2	1.	0.	rh_caudalmi	6099.28	5917.05±141	0.	0.
emporal	4±2263.	360.47	0	2	ddlefrontal	±1548.1	0.94	8	3
	96		7	8		3		7	8
			1	6					5

 Table 5: Brain structure volume comparison between males in HC group and MRIn-MTLE group(mm³)

STRUCTU	нс	MRIN-MTI F	τ	Р	STRUCTU	нс	MRIN-MTI F	τ	Р
RF	GROUP	$GROUP \ (\overline{\mathbf{x}}$	-	-	RF	GROUP	GROUP $(\overline{x} +$	-	-
	$(\overline{x} \pm S)$	± S)				$(\overline{x} \pm S)$	S)		
Ih lateralo	12991 2	13279 68+2	_	0	rh nericalca	2368 51	2435 8+647		0
ccinital	3+1744	329.26	0	о. З	rine	+510.67	2400.0±047. 85	0	٥. ۲
colpital	26	020.20	о. q	2	TITIC	1010.07	00	о. 8	1
	20		q	2				1	6
			1	0				6	U
lh postori	3109.46	3109 07+72	0	0	rh inforiarta	11486.0	11730 7/+01		0
orcingulat	+648 43	6 99	0. 0	0. 2	mporal	9+21/2	117 52.7 4121	-	0. 1
o	1040.45	0.00	3	5	прога	82	40.90	0. 8	1
e			۱ ۵	0		02		0	י 7
			9	9				2	1
	0000 40	0000 05 10				40005 5	40700 00 00		
In_tempor	2622.42	2686.65±49	-	0.	rn_superior	12985.5	12720.99±25	0. 7	0.
alpole	±499.53	2.81	0.	3	parletal	9±2101.	80.03	1	4
			9	0		48		9	2
			1 5	1				5	8
			5						
lh_parahip	2043.27	2096.36±50	-	0.	rh_rostralan	1953.87	1901.44±531	0.	0.
pocampal	±318.96	3.84	0.	3	teriorcingula	±519.3	.17	7	4
			8	7	te			0	8
			9	5				6	1
Ih_precent	13601.8	13333.19±2	0.	0.	rh_parsorbit	2917.85	2966.51±554	-	0.
ral	4±1829.	647.5	8	4	alis	±506.35	.03	0.	5
	32		3	0				6	1
			5	5				4	8
								8	
lh_entorhi	1913.34	1970.23±47	-	0.	rh_posterior	3164.73	3099.33±689	0.	0.
nal	±500.23	6.71	0.	4	cingulate	±761.44	.71	6	5
			8	1				3	2
			2	1				7	5
			3						
lh_rostrala	2625.96	2699.04±65	-	0.	rh_insula	7090.29	7179.94±111	-	0.
nteriorcing	±623.91	9.16	0.	4		±994.58	2.83	0.	5
ulate			8	2				5	5
			0	2				9	
			5					9	
Ih_middlet	11391.0	11132.01±2	0.	0.	rh_lingual	7131.34	6998.8±1673	0.	0.
emporal	8±2390.	500.89	7	4	_ *	±1549.3	.17	5	5
-	42		4	5		2		8	6
			9	5				1	2

 Table 5(b): Brain structure volume comparison between males in HC group and MRIn-MTLE
 group(mm³)

			5	nour	///////////////////////////////////////				
STRUCTU RE	HC GROUP $(\overline{x} \pm S)$	MRIN-MTLE GROUP (\bar{x} ± S)	Т	Ρ	STRUCTU RE	HC GROUP $(\bar{x} \pm S)$	MRIN-MTLE GROUP ($\overline{x} \pm$ S)	Т	Ρ
lh_caudala	1570.8±	1622.99±53	-	0.	rh_isthmusc	2483.47	2529.63±684	-	0.
nteriorcing	462.67	3.76	0.	4	ingulate	±644.88	.46	0.	6
ulate			7	6				4	2
			3	1				9	4
			9					1	
Ih_pericalc	2088.28	2138.34±53	-	0.	rh_temporal	2631.14	2672.85±630	-	0.
arine	±490.04	9.24	0.	4	pole	±592.95	.56	0.	6
			6	9				4	3
			8	3				8	
			7					2	
Ih_lingual	6556.59	6681.58±14	-	0.	rh_rostralmi	16730.9	16526.02±35	0.	0.
	±1411.5	55.05	0.	5	ddlefrontal	3±3079.	66.43	4	6
	1		6	3		59		3	6
			1	8				5	4
			7						
Ih_precun	9789.33	9938.35±20	-	0.	rh_paracent	3938.26	3900.37±628	0.	0.
eus	±1636.7	15.19	0.	5	ral	±682.29	.84	4	6
	1		5	6				0	8
			7	7				8	3
			4						
lh_supram	11535.7	11734.86±2	-	0.	rh_transver	904.27±	916.97±232.	-	0.
arginal	2±2268.	644.47	0.	5	setemporal	208.98	46	0.	6
	98		5	6				4	8
			7	8				0	5
			2					6	
Ih_inferior	12639.5	12833.56±2	-	0.	rh_parsoper	3914.54	3877.19±945	0.	0.
parietal	7±1935.	802.81	0.	5	cularis	±764.45	.85	3	7
	09		5	7				0	5
			7					7	9
lh_isthmus	2709.68	2753.9±725.	-	0.	rh_middlete	12435.7	12531.54±24	-	0.
cingulate	±566.34	46	0.	6	mporal	5±2187.	03.62	0.	7
			4	3		38		2	6
			8	1				9	8
								5	
Ih_paracen	3550.93	3508.75±70	0.	0.	rh_suprama	9793.13	9874.48±229	-	0.
tral	±573.83	3.52	4	6	rginal	±1949.0	1.24	0.	7
			6	4		3		2	8
			5	3				7	7

Table 5(c): Brain structure volume comparison between males in HC group and MRIn-MTLE group(mm³)

			<u> </u>	Jioup	y(mm*)				
STRUCTU	HC	MRIN-MTLE	Т	Ρ	STRUCTU	HC	MRIN-MTLE	Т	Ρ
RE	GROUP	GROUP (\overline{x}			RE	GROUP	GROUP ($\overline{x} \pm$		
	$(\overline{x} \pm S)$	± S)				$(\overline{x} \pm S)$	S)		
lh_cuneus	3212.32	3252.21±71	-	0.	rh_medialor	5997.21	6031.12±100	-	0.
	±623.14	3.5	0.	6	bitofrontal	±834.2	7.27	0.	7
			4	7				2	9
			2	4				5	6
			1					9	
Ih transve	1224.31	1237.03±34	-	0.	rh caudala	1960.37	1943.02±571	0.	0.
rsetempor	±287.82	5.31	0.	7		±608.25	.99	2	8
al			2	7	ate			0	3
			8	8				8	6
			3						
lh postcen	9883.92	9944.61±18	-	0.	rh superiort	11976.5	12026.34±25	-	0.
tral	±1553.1	52.86	0.	8	emporal	8±2202.	90.31	0.	8
	3		2	0		2		1	8
	-		5	2		_		4	4
			1	-				6	
lh frontain	1128.38	1135 36+21	-	0	rh nostcent	9561 9+	9593 4+1793	-	0
	+199.92	0.78	0	0. 8	ral	1508.2	87	0	0. 8
	100.02	0.70	0. 2	1	1 di	1000.2	.07	0. 1	a
			2	1				י 2	3
			4					4	5
Ih fusifor	9727.75	9674.89±18	0.	0.	rh parahipp	1843.6±	1852.15±520	-	0.
m	+1670.9	03.77	2	8	ocampal	398.31	.56	0.	8
	5		-	3				1	9
	•		5	Ū				3	6
lh insula	7226 9+	7241 72+10	-	0	rh inferiorn	15404 5	15365 44+30	0	0
	900.01	12 77	0	9	arietal	7+2672	97 71	0	9
	000.01		1	1	anotar	86	01111	g	2
			0	3		00		6	4
			9	U				Ū	•
lh superio	12505 4	12513 52+2	-	0	rh frontalno	1373 05	1376,73+304	_	0
rtemporal	6+2205	773.83	0	о. 9		+264 02	68	0	о. q
rtemporar	72	110.00	0.	8		±204.02	.00	0.	2
	12		2	2				a	7
			2	2				3 1	'
Ih lateralo	7734 11	7734.65+11	-	0	rh parstrian	4470 97	4475.59+998	-	0
rbitofronta	+995 65	75.24	0	9. 9	gularis	+956 12	.73	0	9. 9
			0	9	3			0	7
-			0	7				3	3
			4	1				3	5
								-	

Table 5(d): Brain structure volume comparison between males in HC group and MRIn-MTLE group (mm³)

STRUCTU	НС	MRIN-MTLE	Τ	Ρ	STRUCTU	НС	MRIN-MTLE	Τ	Р
RE	GROUP	GROUP (\overline{x}			RE	GROUP	GROUP (\overline{x} ±		
	(x ± S)	± S)				(x ± S)	S)		
BrainVolu	116887	1152202.61	0.	0.	Estimated	153361	1474696.34±	2.	0.
meWithout	7.2±123	±134475.15	9	3	total	1.52±15	198571.91	3	0
Ventricles	684.28		1	6	intracranial	3933.48		4	2
			3	3	volume			5	

 Table 5(e): Brain structure volume comparison between males in HC group and MRIn-MTLE

* *lh= left hemisphere; ** rh=right hemisphere*

2.5. Comparison of female differences in brain subregion volume between the groups

The eTIV and volumes of left caudal middle frontal gyrus, left precentral gyrus, left postcentral gyrus, right caudal middle frontal gyrus, right isthmus of cingulate gyrus, right posterior cingulate gyrus, right precentral gyrus, right temporal pole, right inferior temporal gyrus, right cuneus, right entorhinal cortex were larger in HC group than in MRIn-MTLE group, (P<0.05), differences of the other brain structure volumes between two groups were statistically insignificant(P>0.05) (Table 6, Figure 1B).

			MTL	.E gr	oup(mm³)				
STRUCTUR	НС	MRIN-	т	Ρ	STRUCTURE	НС	MRIN-	т	Ρ
E	GROUP	MTLE				GROUP	MTLE		
		GROUP					GROUP		
*lh_caudalm	6029.09	5585.6±1	2.	0.	**rh_caudalmi	5979±95	5441.88±	3.	0.
iddlefrontal*	±1017.4	056.4	86	0	ddlefrontal**	8.6	1113.23	46	0
	2		9	0				9	0
				5					1
Ih_precentr	13127.5	12385.34	2.	0.	rh_isthmuscin	2345.24±	2129.26±	2.	0.
al	4±1859.	±2227.02	42	0	gulate	382.39	613.96	83	0
	83		7	1				3	0
				6					5
Ih_postcent	9431.94	9031.86±	2.	0.	rh_posteriorci	3015.63±	2759.93±	2.	0.
ral	±1269.9	1395.52	01	0	ngulate	579.26	637.84	81	0
			2	4				5	0
				6					5
Ih_parsorbit	2236.18	2334.27±	-	0.	rh_precentral	12955.14	12178.48	2.	0.
alis	±333.55	365.08	1.	0		±1874.09	±2156.11	57	0
			88	6				9	1
			2	1					1

 Table 6(a): Brain structure volume comparison between females in HC group and MRIn

HC MRIN-STRUCTURE ΗС **MRIN-**STRUCTUR Т Ρ Т Ρ Ε GROUP MTLE GROUP MTLE GROUP GROUP Ih parahipp 2013.28 1894.03± 0. rh temporalp 2591.56± 2399.99± 2. 0. 1. ocampal ±413.96 443.7 86 0 ole 409.05 579.1 56 0 4 6 3 1 4 1 lh_frontalpo 1038.5± 0. rh inferiortem 0. 1092.61± -10630.52 9965.03± 2. ±1674.13 le 170.31 254.35 1. 0 1893.71 49 0 poral 9 67 8 1 7 6 3 0. Ih_temporal rh cuneus 3076.84± 0. 2540.12 2418.3±5 1. 3299.47± 2. pole ±417.13 61.82 1 628.09 654.93 32 0 65 2 0 7 2 1 1 Ih_isthmusc 2468.92 2329.27± 0. rh_entorhinal 1770.98± 1644.94± 2. 0. 1. ingulate ±439.49 702.42 59 1 444.16 360.07 09 0 9 1 3 1 2 8 Ih_inferiorte 10853.7 10426.56 1. 0. rh_frontalpole 1235.74± 1310.51± 0. mporal 3±1767. ±2041.82 50 1 208.18 294.25 1. 0 3 85 1 96 5 5 8 1 Ih_cuneus 2939.39 2811.89± 1. 0. rh transverse 881.28±1 830.28±2 1. 0. 21.07 ±567 599.46 46 1 temporal 69.03 73 0 6 4 9 8 4 4 lh_rostralan 2281.73 2394.81± -0. rh fusiform 8664.69± 8278.91± 1. 0. 1 teriorcingul ±488.02 543.17 1. 1323.74 1729.35 68 0 ate 46 4 9 9 4 5 Ih_transvers 1128.67± 0. rh_parahippo 0. 1177.96± 1. 1794.66± 1711.06± 1. etemporal 229.12 270.37 31 1 campal 281.7 385.98 66 0 9 8 9 9 9 0. Ih pericalca 1986.61 1899.02± rh parsoperc 3725.13± 3562.44± 0. 1. 1. rine ±461.88 435.08 31 1 ularis 563.15 765.9 62 1 9 4 0 2 6

 Table 6(b): Brain structure volume comparison between females in HC group and MRIn-MTLE group(mm³)

 Table 6(c): Brain structure volume comparison between females in HC group and MRIn-MTLE group(mm³)

STRUCTUR E	HC GROUP	MRIN- MTLE	т	Ρ	STRUCTURE	HC GROUP	MRIN- MTLE	т	Ρ
		GROUP			• • •		GROUP		
Ih_posterior	2967.89	2842.04±	1.	0.	rh_postcentra	9028.2±1	8753.64±	1.	0.
cingulate	±523.5	795.01	25	2	I	461.39	1421.65	27	2
			4	1				8	0
				1					3
Ih_superiort	11665.31	11280.78	1.	0.	rh_middletem	11127.3±	10708.57	1.	0.
emporal	±1929.7	±2258.52	22	2	poral	2068.34	±2568.39	20	2
	7		8	2				5	3
				1					
Ih_superiorf	21504.7	20956.86	1.	0.	rh_lingual	6536.11±	6304.64±	1.	0.
rontal	9±2708.	±3295.47	21	2		1279.53	1387.27	16	2
	24		9	2				4	4
				5					6
Ih_lateraloc	11309.36	11653.64	-	0.	rh_pericalcari	2271.1±5	2181.9±5	1.	0.
cipital	±1734.5	±2192.42	1.	2	ne	27.56	24.98	13	2
	4		16	4				7	5
			8	4					7
Ih_fusiform	8811.89±	8585.18±	1.	0.	rh_medialorbi	5472.04±	5582.57±	-	0.
	1369.82	1614.02	01	3	tofrontal	636.64	760.21	1.	2
			6	1				05	9
				1				7	2
lh_caudalan	1539.14	1470.83±	1.	0.	rh_precuneus	9366.6±1	9148.5±1	1.	0.
teriorcingul	±410.75	490.64	01	3		367.73	496.96	02	3
ate			3	1					0
				3					9
lh_suprama	10805.4	10541.92	0.	0.	rh_superiorpa	12334.27	12555.27	-	0.
rginal	1±1837.	±2120.87	89	3	rietal	±1620.42	±2045.07	0.	4
	16		1	7				80	2
				4				4	3
lh_precuneu	9077.86	8899.33±	0.	0.	rh_lateralorbit	6997.49±	7101.72±	-	0.
s	±1258.6	1512.01	86	3	ofrontal	782.23	1117.48	0.	4
	8		1	9				72	7
								5	
Ih_inferiorp	11629.47	11853.74	-	0.	rh_parsorbital	2702.77±	2747.33±	-	0.
arietal	±1867.9	±1979.85	0.	4	is	359.23	494.82	0.	4
	8		78	3				69	9
			2	5				1	

Table 6(d): Brain structure volume comparison between females in HC group and MRIn-
MTLE group(mm ³)

STRUCTUR	нс	MRIN-	т	Р	STRUCTUR	НС	MRIN-	т	Р
E	GROUP	MTLE			E	GROUP	MTLE		
		GROUP					GROUP		
Ih_parsoper	4306.07	4233.1±	0.6	0.5	rh_superiorfr	20656±2	20354.3	0.	0.4
cularis	±736.73	845.92	17	38	ontal	664.11	4±3221.	68	95
							42	5	
Ih_paracentr	3426.71	3385.7±	0.5	0.6	rh_caudalan	1769.07±	1734.06	0.	0.6
al	±493.36	599.66	01	17	teriorcingula	490.08	±500.62	47	36
					te			4	
Ih_superior	12894.1	12755.8	0.4	0.6	rh_rostralmi	15190.54	15345.5	-	0.6
parietal	3±1755.	1±1985.	95	21	ddlefrontal	±2323.68	1±2324.	0.	55
	77	84					21	44	
								7	
lh_insula	6625.83	6676.59	-	0.6	rh_superiort	11092.18	10982.0	0.	0.7
	±721.19	±795.73	0.4	54	emporal	±1723.34	1±2136.	38	04
			48				34	1	
Ih_medialor	5200.97	5244.47	-	0.6	rh_lateraloc	11468.47	11571.4	-	0.7
bitofrontal	±589.81	±710.08	0.4	55	cipital	±1877.62	2±1887.	0.	14
			47				17	36	
								7	
lh_parstrian	3424.08	3398.57	0.3	0.7	rh_supramar	9399.63±	9313.26	0.	0.7
gularis	±541.74	±579.82	05	61	ginal	1770.86	±2030.7	30	61
							8	4	
lh_entorhina	1754.34	1735.49	0.2	0.7	rh_inferiorpa	13941.18	13867.5	0.	0.8
I	±357.01	±497.14	92	7	rietal	±2116.25	8±2204.	22	2
							01	9	
lh_rostralmi	14634.3	14699.3	-	0.8	rh_rostralant	1708.4±4	1700.02	0.	0.8
ddlefrontal	4±1981.	8±1909.	0.2	23	eriorcingulat	06.81	±449.19	13	96
	27	21	24		е			1	
lh_lateralorb	7207.86	7228.41	-	0.8	rh_paracentr	3770.19±	3774.6±	-	0.9
itofrontal	±771.71	±878	0.1	68	al	552.61	865.33	0.	68
			67					04	
								1	
lh_middlete	10083.6	10040.1	0.1	0.8	rh_insula	6572.34±	6575.73	-	0.9
mporal	8±1978.	±2346.5	35	93		770.12	±988.54	0.	8
	77	4						02	
								6	
Ih_lingual	6003.23	6012.51	-	0.9	rh_parstrian	4128.34±	4127.79	0.	0.9
	±1259.8	±1298.7	0.0	61	gularis	705.46	±935.57	00	96
	9	9	49					4	

					up(mm [*])				
STRUCTUR	НС	MRIN-	т	Ρ	STRUCTUR	НС	MRIN-	т	Ρ
E	GROUP	MTLE			Е	GROUP	MTLE		
		GROUP					GROUP		
BrainVolum	1073687	106760	0.4	0.6	Estimated	1399306.	134087	2.	0.0
eWithoutVe	.53±101	5.02±10	03	88	total	99±1593	3.07±17	35	2
ntricles	530.98	1117.49			intracranial	46.34	3887.29		
					volume				

 Table 6(e): Brain structure volume comparison between females in HC group and MRIn

 MTL E group (grows3)

* *lh= left hemisphere; ** rh=right hemisphere*

2.6. Effectiveness of volumetric feature-based diagnostic classification

2.6.1 Classification effectiveness of brain volume as classification features in all participants

On the validation dataset, the SVM model based on 46 features screened by RFE achieved the greatest AUC out of 3 classifiers employed. The AUC in the training dataset reached 0.780. In this point, the AUC and the accuracy of the model in test dataset approached 0.780 and 0.721, respectively (Table 7, Table 8, Figure 2).

Figure 2: Classification efficacy of the model constructed on brain volume features in all participants

STATISTICS	VALUE
ACCURACY	0.721
*AUC	0.781
AUC 95% CIS	[0.711-0.849]
**NPV	0.809
***PPV	0.641
SENSITIVITY	0.786
SPECIFICITY	0.673

Table 7: Statistics of support vector machine model in all participants' volumetric features

*AUC: Area Under Curve, **NPV: Negative Predictive Value, ***PPV: Positive Predictive Value

FEATURES	INDEX	FEATURES	INDEX
Age	-3.519	lh_supramarginal_volume	0.934
*lh_caudalanteriorcingulate_volume	0.452	lh_frontalpole_volume	1.173
lh_caudalmiddlefrontal_volume	-0.781	lh_temporalpole_volume	-0.177
lh_cuneus_volume	0.639	lh_insula_volume	0.403
lh_entorhinal_volume	0.314	**eTIV	-0.821
lh_inferiorparietal_volume	0.348	rh_cuneus_volume	-1.028
Ih_inferiortemporal_volume	-1.199	***rh_entorhinal_volume	-1.077
Ih_isthmuscingulate_volume	-0.344	rh_inferiorparietal_volume	-0.27
Ih_lateraloccipital_volume	1.116	rh_inferiortemporal_volume	0.832
Ih_lateralorbitofrontal_volume	0.017	rh_lateraloccipital_volume	1.157
lh_lingual_volume	0.721	rh_lateralorbitofrontal_volume	1.189
Ih_middletemporal_volume	0.888	rh_lingual_volume	-0.409
lh_paracentral_volume	0.649	rh_medialorbitofrontal_volume	0.822
lh_parsopercularis_volume	-0.933	rh_parahippocampal_volume	0.618
lh_parsorbitalis_volume	-0.684	rh_paracentral_volume	0.082
lh_parstriangularis_volume	-1.288	rh_parsorbitalis_volume	-0.106
Ih_pericalcarine_volume	-0.462	rh_parstriangularis_volume	-0.058
lh_postcentral_volume	-0.173	rh_posteriorcingulate_volume	-1.418
lh_precentral_volume	-1.257	rh_precuneus_volume	-1.73
Ih_precuneus_volume	0.912	rh_superiorparietal_volume	0.055
Ih_rostralanteriorcingulate_volume	1.206	rh_supramarginal_volume	0.903
lh_rostralmiddlefrontal_volume	-1.527	rh_frontalpole_volume	1.226
lh_superiorparietal_volume	-0.233	rh_temporalpole_volume	-0.56

Table 8: Feature coefficients in the classification model based on all participants	brain
volumes	

*Ih: left hemisphere, **eTIV: estimated total intracranial volume, ***rh: right hemisphere

2.6.2. Classification effectiveness of brain volume as classification features in male participants

On the validation dataset, the logistic regression model based on the nine features screened by RFE achieved the greatest AUC out of 3 classifiers employed. The AUC in the training dataset reached 0.813. In this point, the AUC and accuracy of the model in test dataset approached 0.716 and 0.700, respectively (Table 9, Table 10, Figure 3). On the test dataset, the AUC is reported to be approximately 0.716, and the accuracy is approximately 0.700. These metrics indicate how well the model generalizes to unseen data.

An AUC of 0.716 and an accuracy of 0.700 suggest that the model maintains good discriminatory power and performs reasonably well on the test

data, although the performance may not be as strong as on the training data.

cv_val: cross validation, rh: right hemisphere, lh: left hemisphere, eTIV: estimated total intracranial volume

Figure 3: Classification efficacy of the model constructed on brain volume features in male participants

Statistics	Value
Accuracy	0.7
*Auc	0.716
Auc 95% Cls	[0.598-0.824]
**Npv	0.643
***Ppv	0.833
Sensitivity	0.5
Specificity	0.9

Table 9: Statistics of logistic regression model in male participants' volumetric features

*AUC: Area Under Curve, **NPV: Negative Predictive Value, ***PPV: Positive Predictive Value

Table 10: Feature coefficients in the classification model based on male participants' brain

volumes

FEATURES	INDEX
Age	1.591
*lh_parsopercularis_volume	-4.274
Ih_rostralmiddlefrontal_volume	-4.087
Ih_superiorparietal_volume	4.999
Ih_frontalpole_volume	1.968
**eTIV	-5.166
***rh_cuneus_volume	-3.407
rh_lateraloccipital_volume	5.588
rh_lateralorbitofrontal_volume	3.8

*Ih: left hemisphere, **eTIV: estimated total intracranial volume, ***rh: right hemisphere

2.6.3. Classification effectiveness of brain volume as classification features in female participant

On the validation dataset, the random forest model with 30 features screened by RFE had the greatest AUC out of 3 classifiers employed. The AUC in the training dataset reached 1.000. In this point, the AUC and accuracy of the model in test dataset approached 0.761 and 0.736, respectively (Table 11, Table 12, Figure 4).

cv_val: cross validation, rh: right hemisphere, lh: left hemisphere, eTIV: estimated total intracranial volume

Figure 4: Classification efficacy of the model constructed on brain volume features in female participants

STATISTICS	VALUE	
Accuracy	0.7361	
*AUC	0.761	
AUC 95% Cls	[0.648-0.868]	
**NPV	0.730	
***PPV	0.743	
Sensitivity	0.722	
Specificity	0.75	

Table 11: Statistics of random forest model in female participants' volumetric features

*AUC: Area Under Curve, **NPV: Negative Predictive Value, ***PPV: Positive Predictive Value

 Table12(a): Ranking of features in classification model based on female participants' brain volumes

Features	Rank	Features	Rank
Age	1	rh_cuneus_volume	16
*lh_caudalanteriorcingulate_volume	2	rh_entorhinal_volume	17
Ih_caudalmiddlefrontal_volume	3	rh_inferiorparietal_volume	18
lh_cuneus_volume	4	rh_inferiortemporal_volume	19
Ih_inferiorparietal_volume	5	rh_isthmuscingulate_volume	20

Features	Rank	Features	Rank
Ih_inferiortemporal_volume	6	rh_lateralorbitofrontal_volume	21
Ih_isthmuscingulate_volume	7	rh_medialorbitofrontal_volume	22
Ih_lateraloccipital_volume	8	rh_middletemporal_volume	23
Ih_parsorbitalis_volume	9	rh_postcentral_volume	24
Ih_posteriorcingulate_volume	10	rh_posteriorcingulate_volume	25
Ih_precentral_volume	11	rh_precentral_volume	26
Ih_rostralanteriorcingulate_volume	12	rh rostral anterior cingulate_volume	27
Ih_rostralmiddlefrontal_volume	13	rh rostral middle frontal volume	28
Ih_transversetemporal_volume	14	rh superior temporal volume	29
**rh_caudal middle frontal volume	15	rh frontal pole volume	30

 Table12(b): Ranking of features in classification model based on female participants' brain

 volumes

*Ih: left hemisphere, ** rh: right hemisphere

3. Discussion

TLE is the most prevalent form of drug-resistant chronic epilepsy[5]. Targeted resection procedures, such as selective amygdala resection, are presently regarded as successful surgical approaches, with up to 80% of patients no longer experiencing seizures two years after surgery (Morris, 2006; Natsume, Bernasconi, Andermann, & Bernasconi, 2003). To determine the extent of the MTLE surgery and prognosis, the precise preoperative localization and identification of the epileptogenic focus is highly important. Many recent findings have found the use of accurate brain structure image segmentation and volume calculation to be of great value in preoperative evaluation, and as technology has advanced, the diagnostic accuracy of this technique has grown very much closer to postoperative pathological findings (Sämann et al., 2022). Which provides a noninvasive pre-operative evaluation method to improve surgical outcome and patients' symptoms (Pardoe, Berg, & Jackson, 2013).

Structural MRI provides physiologically valid and objective imaging markers and high reliability; it is thus an objective framework for investigating disease progression. This approach is also more sensitive to gray matter atrophy than visual examination. According to a 2020 review on FreeSurfer hippocampal segmentation methods and applications (Song et al., 2020), previous volumetric research has focused primarily on neurodegenerative conditions, such as AD, and less on epilepsy. We reviewed the literature on volumetric research but found that only 10 (6.2%) of the 162 identified records were epilepsy related. To fully understand the brain regions involved in MRIn-MTLE, the present study conducted structural MRI with healthy adults and epileptic patients. We then segmented and measured the telencephalic volumes of healthy adults and MRIn-MTLE patients using FreeSurfer software

to obtain volume parameters of brain tissue and its subregions with high confidence.

Differences among brain regions in the left and right hemispheres were found in both the HC and MRIn-MTLE groups, suggesting that MRIn-MTLE, despite causing changes in brain region volumes, may be misdiagnosed due to the extent of physiological variability when comparing the volumes of patients' brain regions. Moreover, as neuroimaging methods advance, there is growing evidence that epilepsy is a network illness and that focal epilepsy generalizes to networks other than the epileptogenic focus[14]. In the present study, patients with MRIn-MTLE showed a reduction in the volume of several brain regions, including the temporal lobe; these results are consistent with the literature describing gray matter atrophy in patients with focal epilepsy that also occurs outside the presumed epileptogenic focus (Stefanits et al., 2017). Female MRIn-MTLE patients exhibited changes in volume in the temporal lobe, a portion of the cingulate gyrus, and frontal areas. In contrast, male MRIn-MTLE patients exhibited changes in volume in the temporal, and cingulate regions.

In the past, less emphasis has been placed on examining sex differences in the effects of MRIn-MTLE on brain structure. Similar alterations have been found in terms of cortical thickness and cortical surface area. To understand these sex related differences, a large number of neuropathological studies are required to characterize the various patterns of neuronal cell loss in the temporal lobe and adjacent temporal lobe structures in surgical specimens (Steve et al., 2020; Thom, 2014) or autopsy brains of epileptic patients. Therefore, the efficacy of imaging and neuropathological categorization methods for distinguishing the pathological forms of TLE in patients of different sexes should be evaluated.

Statistical analysis revealed several brain subregion volumes is smaller in MRIn-MTLE patients. Feature selection results came with features positively or negatively related with the MRIn-MTLE classification, 10 most discriminative features were selected (Figure2, Figure 3). In male participants, the statistical results revealed 12 differences between two groups, within which left rostral middle frontal gyrus was negatively related with classification (1 out of 10 most discriminative features). In female participants, the statistical results revealed 5 differences between two groups, within which left caudal middle frontal gyrus, right caudal middle frontal gyrus, right isthmus of cingulate gyrus, right precentral gyrus, right cuneus were negatively related with classification (5 out of 10 most discriminative features). It should be mentioned that some research have shown that sodium valproate can cause a decrease in parietal cortex thickness and volume (Tondelli, Vaudano, Sisodiya, & Meletti, 2020; Varho, Komu, Sonninen, Lähdetie, & Holopainen, 2005). The patients in the current study used carbamazepine and sodium valproate (carbamazepine N=197, sodium valproate N=23, and the combination of the two drugs N=59), and due to insufficient sample size, a comparative analysis of brain volumes in patients using sodium valproate was not performed separately in this study, but given that some participants also had a reduction in parietal volume, the effect of the drugs should be considered when making the diagnosis (Wiebe, Blume, Girvin, & Eliasziw, 2001).

Machine learning techniques can improve MRIn-MTLE lesion identification accuracy. Previous neuroimaging studies have used image histology to perform tasks such as tumor grading. Furthermore, one of the main focuses of the machine learning field in recent years has been the development of classification models for neurological diseases without obvious lesions (e.g., Alzheimer's disease and Parkinson's disease) using intrinsic features of brain tissue, and several models have been shown to have good classification efficacy, and the results of these studies have provided valuable information. The findings of these studies can be used to develop classification models based on MRIn-MTLE patient image features, in our case, there were differences between feature selection and statistical results, indicating that only revealing the differences by utilizing univariate analysis was not sufficient for feature selection, multivariate analysis, such as the machine-learning algorithm employed, provided much better effectiveness and classified the features in positive or negative, which is much clearer than statistic outcome alone (Wu et al., 2005).

This study demonstrates that brain volume as a classification feature can be utilized to diagnose and categorize MRIn-MTLE using a whole-brain volumebased classification model. The classification accuracy in the test dataset of male participants was statistically acceptable, but overfitting due to the small sample size (200 male participants and 180 female participants) limited the possibility of the classification models, which required further evaluation by increasing the sample sizes. These findings demonstrated that using structural characteristics as classification features aids in training classification models. In future studies, we would increase the sample size, divide patients into subgroups based on medication usage, and introduce novel network models to improve classification accuracy that meets clinical diagnosis needs.

4. Conclusion

This investigation sheds light on the alterations in brain volumes associated with Magnetic Resonance-Negative Temporal Lobe Epilepsy (MRIn-MTLE) among athletes and fitness enthusiasts. Epilepsy is a condition that affects individuals across various walks of life, including those actively engaged in sports and fitness activities. For a subset of these individuals, MRIn-MTLE presents a unique challenge as it lacks specific epileptogenic foci that can be identified through traditional neuroimaging techniques. Through the utilization of T1-weighted magnetization prepared rapid gradient echo imaging (T1W-MPRAGE) scans and FreeSurfer software, we conducted a comprehensive analysis of brain regions and structures in MRIn-MTLE patients within the athlete and fitness enthusiast demographic, comparing them to a control group of healthy individuals. This investigation aimed to provide precise structural data on brain regions and assess differences in brain structure between the two groups.

The results of this study have not only deepened our understanding of MRIn-MTLE but also emphasized the need for tailored diagnostic and therapeutic approaches for athletes and fitness enthusiasts facing this condition. While conventional MRI scans may not reveal epileptogenic foci, automated segmentation tools and volumetric parameters have shown promise in providing valuable insights for classification and diagnosis. These findings open avenues for further research and clinical applications in managing MRIn-MTLE among athletes and fitness enthusiasts.

As our knowledge continues to evolve, a multidisciplinary approach involving neurologists, sports medicine specialists, and imaging experts becomes increasingly important in addressing the unique challenges posed by MRIn-MTLE within this population. By better understanding the structural brain changes associated with MRIn-MTLE, we can enhance diagnostic accuracy and develop more targeted interventions, ultimately improving the quality of life for athletes and fitness enthusiasts affected by this condition

Declarations

Ethics approval and consent to participate

This research was authorized by the Medical Research Ethics Board of First Affiliated Hospital of Xinjiang Medical University, all methods were performed in accordance with the relevant guidelines and regulations, and all subjects provided written informed consent forms.

Consent for publication

All subjects including children's parents provided written informed consent forms, terms regarding publication consent were included in the consent form.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This work was supported by Regional Collaborative Innovation special fund of Xinjiang Uygur Autonomous Region (Grant: #2020E0275), and Xinjiang Uygur Autonomous Region Natural Science Foundation Science Fund project (Grant: #2022D01C774)

Authors' contributions

HK wrote the first version of this manuscript. FY and SD carried out the data processing and statistical analysis. HZ was responsible for the data collection. WJ and YW contributed to the conception and design of this manuscript. All authors contributed to the manuscript revision.

Acknowledgements

Not applicable

Project Support:

1.Regional Collaborative Innovation special fund of Xinjiang Uygur Autonomous Region (Grant: #2020E0275),

2.Xinjiang Uygur Autonomous Region Natural Science Foundation Science Fund project (Grant: #2022D01C774)

REFERENCES

- Alvim, M. K., Coan, A. C., Campos, B. M., Yasuda, C. L., Oliveira, M. C., Morita, M. E., & Cendes, F. (2016). Progression of gray matter atrophy in seizure-free patients with temporal lobe epilepsy. *Epilepsia*, 57(4), 621-629.
- Balter, S., Lin, G., Leyden, K., Paul, B., & McDonald, C. (2019). Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy. *Brain and Language*, *193*, 31-44.
- Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H., van Emde Boas, W., . . . Mathern, G. W. (2010). Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. In: Wiley Online Library.
- Cendes, F. (2005). Mesial temporal lobe epilepsy syndrome: an updated overview. *Journal of Epilepsy and Clinical Neurophysiology, 11*, 141-144.
- Englot, D. J., Konrad, P. E., & Morgan, V. L. (2016). Regional and global

connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. *Epilepsia*, *57*(10), 1546-1557.

Fischl, B. (2012). FreeSurfer. *Neuroimage*, 62(2), 774-781.

- Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., . . . Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. *Neuron*, *33*(3), 341-355.
- Herman, J., McKlveen, J., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., . . .Myers, B. (2016). Regulation of the hypothalamic-pituitaryadrenocortical stress response. Compr Physiol 6: 603–621. In.
- Jones, A. L., & Cascino, G. D. (2016). Evidence on use of neuroimaging for surgical treatment of temporal lobe epilepsy: a systematic review. *JAMA neurology*, *73*(4), 464-470.
- Morris, R. (2006). Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. *European Journal of Neuroscience,* 23(11), 2829-2846.
- Natsume, J., Bernasconi, N., Andermann, F., & Bernasconi, A. (2003). MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. *Neurology*, *60*(8), 1296-1300.
- Pardoe, H. R., Berg, A. T., & Jackson, G. D. (2013). Sodium valproate use is associated with reduced parietal lobe thickness and brain volume. *Neurology*, *80*(20), 1895-1900.
- Pitts, P. J. (2022). Rejuvenating American Healthcare: An Honest Debate. *Journal of Commercial Biotechnology*, 27(1).
- Sáiz-Manzanares, M.-C., Casanova, J., Lencastre, J.-A., & Almeida, L. (2022). Student satisfaction with online teaching in times of COVID-19. *Comunicar, 30*(70), 35-45.
- Sämann, P. G., Iglesias, J. E., Gutman, B., Grotegerd, D., Leenings, R., Flint, C., . . . van Erp, T. G. (2022). FreeSurfer-based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts. *Human brain mapping*, *43*(1), 207-233.
- Song, Y., Zhang, J., Zhang, Y.-d., Hou, Y., Yan, X., Wang, Y., . . . Yang, G. (2020). FeAture Explorer (FAE): a tool for developing and comparing radiomics models. *PLoS One, 15*(8), e0237587.
- Stefanits, H., Springer, E., Pataraia, E., Baumgartner, C., Hainfellner, J. A., Prayer, D., . . . Trattnig, S. (2017). Seven-tesla MRI of hippocampal sclerosis: an in vivo feasibility study with histological correlations. *Investigative radiology*, 52(11), 666-671.
- Steve, T. A., Gargula, J., Misaghi, E., Nowacki, T. A., Schmitt, L. M., Wheatley,
 B. M., & Gross, D. W. (2020). Hippocampal subfield measurement and
 ILAE hippocampal sclerosis subtype classification with in vivo 4.7 tesla
 MRI. *Epilepsy research*, *161*, 106279.
- Thom, M. (2014). Hippocampal sclerosis in epilepsy: a neuropathology review.

Neuropathology and applied neurobiology, 40(5), 520-543.

- Tondelli, M., Vaudano, A. E., Sisodiya, S. M., & Meletti, S. (2020). Valproate use is associated with posterior cortical thinning and ventricular enlargement in epilepsy patients. *Frontiers in neurology, 11*, 622.
- Varho, T., Komu, M., Sonninen, P., Lähdetie, J., & Holopainen, I. E. (2005). Quantitative 1HMRS and MRI volumetry indicate neuronal damage in the hippocampus of children with focal epilepsy and infrequent seizures. *Epilepsia*, 46(5), 696-703.
- Wiebe, S., Blume, W. T., Girvin, J. P., & Eliasziw, M. (2001). A randomized, controlled trial of surgery for temporal-lobe epilepsy. *New England Journal of Medicine*, 345(5), 311-318.
- Wu, W.-C., Huang, C.-C., Chung, H.-W., Liou, M., Hsueh, C.-J., Lee, C.-S., . . . Chen, C.-Y. (2005). Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. *American journal of neuroradiology*, 26(5), 1270-1275.