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ABSTRACT 

In the motor function rehabilitation of patients, image analysis technology is 

being widely used in the rehabilitation treatment of patients. Combined with 

images, feedback on the patients’ rehabilitation status can be provided, and the 

treatment plan can be adjusted in a timely manner. Existing image analysis 

technologies mostly use convolutional neural networks (CNN) or long short-

term memory (LSTM) network to analyze continuous motion movements. They 

have good enough performance in terms of accuracy but may lack real-time 

performance. Based on this, this paper proposes a CNN-TCN architecture that 

combines the ResNet-50 model of the CNN structure and the temporal 

convolutional networks (TCN), a variant of the recurrent neural networks (RNN), 

and uses headphones, videos, etc., for real-time feedback. To verify the effect 

of the architecture and realize the real-time feedback mechanism of motion 

function based on image analysis, this experiment selects HMDB51 and KTH 

datasets as the initial datasets for training, supplemented with common daily 

action data such as walking, bending, and arm swinging, etc. Then 50 patients 

who need rehabilitation are recruited as volunteers to verify the results. The 

results are evaluated using three indicators: accuracy, recall, and feedback time. 

It is found that the accuracy and recall of CNN alone are 76% and 74%, and 

the accuracy and recall of LSTM alone are 83% and 84%, while the accuracy 

and recall of CNN-TCN are 86% and 87%. The feedback time of CNN, LSTM, 

and CNN-TCN is basically 340 to 400 milliseconds, 360 to 430 milliseconds, 

and 290-360 milliseconds respectively. CNN-TCN is better than CNN and 

LSTM in accuracy and also outperforms CNN and LSTM in inference time. 

Therefore, CNN-TCN is a better choice while ensuring high accuracy and good 
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effectiveness. 

KEYWORDS: Motor Function Recovery; Image Analysis; Real-time Feedback; 

Recurrent Neural Network; Long Short-Term Memory; CNN-TCN Model. 

1. INTRODUCTION 

Motor function recovery is a significant research area in the field of 

rehabilitation medicine (Roesner et al., 2024), aiming to help patients with 

limited motor ability due to disease, trauma, or surgery to restore their normal 

motor function. As the population ages and lifestyles change, there is already a 

large base of patients with motor dysfunction, which is a great burden to the 

patient’s family and society, so finding effective methods and technical tools for 

motor recovery has become especially important. Image analysis-based 

technology can provide targeted training guidance by acquiring patients’ motor 

data in a variety of ways, including video monitoring and sensor data. This real-

time feedback mechanism not only improves patient participation and 

motivation but also effectively promotes the recovery of motor function. 

Therefore, it has become an important trend in modern rehabilitation research 

to apply image analysis technology in motor function recovery (Kidziński et al., 

2020). The continuous development of computer vision and deep learning (DL) 

technology has greatly promoted the research on patient motor rehabilitation 

and has also performed well in image analysis (Debnath et al., 2022; Swarnakar 

& Yadav, 2023). Computer vision technology enables real-time analysis of the 

motion status in the video stream and automatic detection of the patient’s 

movement patterns, posture, and amplitude of movement, which allows doctors 

to understand the patient’s motor performance in real time and make timely 

adjustments to the rehabilitation plan. Convolutional neural networks (CNN) 

excel in action recognition tasks and can accurately recognize multiple motion 

types. This is critical for monitoring the performance of exercise therapy and 

assessing the progress of patient rehabilitation. Liu K proposed a method based 

on filter-bank multi-scale convolutional neural network (FBMSNet) to decode 

motor imagery information in electroencephalogram (EEG) signals. The filter 

bank technology and multi-scale convolution operations were combined to 

better extract feature information in different frequency bands, ultimately 

significantly improving the decoding precision of motor imagery tasks (Liu et al., 

2022) Tortora S et al. used long short-term memory (LSTM) neural network to 

study the decoding of gait patterns in brain signals. The proposed decoding 

method showed AUC (Area Under Curve)>90% for gait patterns (Tortora et al., 

2020). Qiu Y proposed a Siamese convolutional neural network (SCNN) for 

evaluating the quality of movements in rehabilitation training. It used DL 

combined with motion posture matching technology to precisely analyze and 

judge the standardization of rehabilitation training movements, thereby 

improving the accuracy of rehabilitation training effect evaluation (Qiu et al., 

2022). Bijalwan V proposed a heterogeneous computing model for identifying 
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rehabilitation training for recovery of walking patterns and postural stability after 

injury. The model combined multiple computing resources and algorithms to 

achieve precise identification and analysis of gait and postural stability during 

rehabilitation, which helped to evaluate and improve the effectiveness of 

rehabilitation training (Bijalwan et al., 2022). Xu, Fangzhou proposed a method 

for EEG data augmentation based on a deep convolutional generative 

adversarial network (DCGAN) model for motor rehabilitation training after 

stroke. By generating more EEG data, the decoding performance of the motor 

imagery task was improved, thereby enhancing the effect of stroke 

rehabilitation training (Xu et al., 2022). Image analysis technology has 

demonstrated superior performance in tasks such as motion posture 

recognition, action classification, and motion trajectory tracking. It can not only 

objectively quantify the patients’ motion status, but also effectively reduce 

human errors in the rehabilitation process (Chen et al., 2022). By using DL 

models such as advanced CNN, researchers are able to extract features from 

complex motion data to improve the personalization of rehabilitation training. 

Although image analysis technology has made significant progress in improving 

rehabilitation efficiency (Huo et al., 2021), there are still some limitations. 

Existing image analysis systems can only passively record and assess the 

patient’s motor performance and lack immediate interactivity and real-time 

feedback capability, which may lead to difficulties in maintaining the correct 

posture or rhythm during the rehabilitation process, affecting the rehabilitation 

effect (Qi et al., 2021). Wang J used a method on the basis of the genetic 

algorithm-convolutional neural network (GA-CNN) for real-time motion pattern 

recognition of lower limb exoskeletons. It used an efficient algorithm to 

accurately identify the user’s motion pattern, thereby optimizing the control 

system of the lower limb exoskeleton and providing more intelligent and 

adaptive feedback (Wang et al., 2022). Wen Y et al. used deep CNN to 

accurately identify motor unit activity from high-density electromyography (HD-

EMG), demonstrating its feasibility and effectiveness. The latency was less than 

80 milliseconds, achieving high-precision identification of motor units and 

providing an effective tool for EMG signal analysis and motion control (Wen et 

al., 2021). Tam S proposed an intuitive real-time control strategy that combined 

DL and transfer learning for the control of a high-density myoelectric prosthetic 

hand. The DL model was used to process the EMG signals, and transfer 

learning was used to improve the adaptability between different users, 

significantly improving the accuracy and response speed of the prosthetic hand 

control [(Tam et al., 2021). New possibilities can be provided for the 

personalization and efficiency of motor function recovery by combining image 

analysis technology with real-time feedback mechanisms (Hashimoto et al., 

2020). Therefore, in this paper, a hybrid neural network model CNN-TCN 

(Ahmadi et al., 2024) that combines CNN and temporal convolutional networks 

(TCN) is proposed, and multimodal sensors (Ihianle et al., 2020)dedicated to 

the field of sports rehabilitation are used to collect data and provide real-time 
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feedback. The CNN model selected in this paper is the deep residual network 

ResNet-50 architecture (Koonce & Koonce, 2021) under the CNN architecture, 

which is suitable for scenarios with high-precision requirements. The trained 

ResNet-50 model is used to extract key features such as posture recognition 

from the motion video frames of the dataset, and then output to TCN to analyze 

the motion sequence. The time dependency is identified, and finally the results 

are output (Du et al., 2023). According to the set feedback conditions and the 

analysis results, real-time feedback is given. By analyzing the experimental 

data and comparing the accuracy and real-time performance of CNN, LSTM, 

and CNN-TCN, it is found that CNN-TCN is indeed a better choice in terms of 

comprehensive accuracy and real-time performance. 

2. Experimental Methods 

The core of the real-time feedback mechanism is the ability to quickly 

and accurately evaluate motion performance, which often relies on efficient 

image analysis technology (Ismail & Malik, 2022). Figure 1 shows the overall 

structure of the method used in this paper. 

 

Figure 1: Overall Structure of Method in this Paper 

The model first extracts feature such as arm contours and stride lengths 

in video frames through multiple residual modules, and then integrates these 

features through fully connected layers. Next, the model further processes the 

features using dilated convolutions and specific convolutional network layers to 

capture more complex patterns. Finally, the model outputs feature maps. 

2.1 Convolutional Neural Networks 

CNN is widely used in many fields such as object detection (X. Wu et al., 

2020), image classification (Chen et al., 2021), image analysis (Guan & Liu, 

2021), etc. CNN is a feedforward neural network with convolution calculation 
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and deep structure (Cong & Zhou, 2023). Its basic structure mainly includes 

input layer, convolutional layer, pooling layer, activation function layer, and fully 

connected layer. 

2.1.1 Input Layer 

The input layer receives image data related to human body movements 

from sensors as the basis for analysis, and the data is then input into the 

network after preprocessing. 

2.1.2 Convolutional Layer 

The convolutional layer identifies the most basic visual features in the 

image, such as changes in hand position, tilt of the waist, movement trajectory 

of the legs, and other details, and provides these feature maps to subsequent 

layers. 

2.1.3 Activation Function 

The activation layer helps the model understand nonlinear features such 

as rapid changes in motion or adjustments to complex postures in the image. 

The role of the ReLU activation function is to add nonlinearity to the features 

extracted by the convolutional layer, allowing the network to recognize more 

complex motion patterns. Common activation functions include Sigmoid, Tanh, 

Softmax, and ReLU functions (Onwujekwegn & Yoon, 2020; Wang et al., 2020). 

Figure 2 presents the curves of four commonly used activation functions: 

 

Figure 2: Common Activation Function Curves 

Their formulas are as follows: 

Sigmoid(x) =
1

1+e−x                          (1) 
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In the Sigmoid function, x is the input value, usually the weighted input 

of the neuron. e−x controls the shape of the function. 

Soft max(xi) =
exi

∑ e
Xjn

j=1

                           (2) 

xi  represents the i -th element in the input vector. exi  represents the 

exponential function of the input element, ensuring that the output is a positive 

number. 

tanh(x) =
ex−e−x

ex+e−x                              (3) 

x is the input value, usually the sum of the weighted inputs to the neuron, 

and can be any real number. ex is the positive exponential transform of x. e−x 

is the negative exponential transform of x. 

ReLU(x) =  max(0, x)                        (4) 

In the ReLU function, x is the input value, and the function returns the 

larger value of x and 0. This helps improve computational efficiency in deep 

networks. The activation function used in this experiment is the ReLU activation 

function, which performs very well in most neural networks. 

2.1.4 Pooling Layer 

The pooling layer helps reduce the noise in the image, focusing on the 

most representative features such as stride, arms, and body contour, ignoring 

unimportant parts and retaining the most important features, thereby achieving 

the effect of down sampling. It can usually reduce the amount of data calculation, 

reduce the parameters of the model, and increase the training speed. 

 

Figure 3: Average Pooling Layer and Max Pooling Layer 

Figure 3 displays the specific diagram of average pooling layer and max 

pooling layer. Max pooling selects the largest value from a region to represent 

the features of the region. Average pooling calculates the average value within 
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the region. 

2.1.5 Fully Connected Layer 

The fully connected layer can combine the features extracted by the 

convolutional layer and the pooling layer, and determine the type of the overall 

action by integrating the previously extracted features such as the arm 

movements, waist postures, leg steps, etc. 

2.2 ResNet-50 

Residual network (ResNet) is a deep CNN architecture. This network 

has attracted widespread attention due to its deep structure and excellent 

performance. The core concept of ResNet is to apply residual connections or 

skip connections (D. Wu et al., 2020). This type of connection enables 

information to be passed across layers in the network, rather than relying only 

on layer-by-layer forward propagation. With this structure, the network is able 

to focus on the difference between the input and the target output, simplifying 

the learning process and allowing deeper layers of the network to still perform 

well. The core construction block of ResNet is the residual block, which consists 

of a convolution path and a skip connection. The skip connection significantly 

improves the training efficiency and overall performance of the deep network 

by adding the input directly to the convolution output instead of simply 

overwriting the input. The residual connection allows the DL module to be 

passed down in an additive form by connecting the input and output of the 

module. Formula (5) is the module mathematical expression of this residual 

connection. 

y = f(x) + x                          (5) 

In Formula (5), y represents the output of the residual connection; f(x) 

represents the method within the module; x represents the input which is the 

output of the previous layer. ResNet has a simple structure and a large network 

depth, and has excellent model training effect. It is very suitable for motion 

image analysis tasks applied to patients’ motor function rehabilitation. 

2.3 Temporal Convolutional Networks 

The core operation of the TCN when processing time series data is the 

dilated causal convolution (Sasou, 2021). Compared with ordinary convolution, 

this convolution method has better temporal causal properties and a larger 

receptive field, enabling it to effectively capture long-term dependencies. The 

dilated causal convolution operation is shown in Figure 4. Compared with 

ordinary convolution, dilated convolution expands the convolution range without 

increasing the number of parameters. Compared with causal convolution, the 

output yt of dilated causal convolution can trace back a longer time interval. 
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uc ∈ {u0, u1, u2, . . . , ut−1}  is a one-dimensional time series data, where the 

dilated causal convolution operation Θ of element c is calculated as follows. 

Θ(c) = (u ∗ f)(c) = ∑ f(i)uc−d∙i
k−1
i=0                    (6) 

 

Figure 4: Dilated Causal Convolution 

In Formula (6), ∗ is the convolution operator; ｕ is the input time series 

vector; f  represents the convolution kernel; f(i)  is the element value of the 

convolution kernel f ; k  is the filter size; d  is the atrous rate; uc−d∙i  is the 

element value of c − d ∙ i  in vector u , and c − d ∙ i  also considers the past 

direction. The dilated causal convolution can expand the receptive field by 

increasing the atrous rate d or the filter k. In the shallow network, a smaller 

atrous rate is selected to ensure local feature extraction, and in the deep 

network, the atrous rate is increased to calculate the local information at 

different times, which ensures that the network is lightweight while ensuring that 

long-term information is not leaked. The data first enters the ResNet-50 layer, 

and then goes through multiple residual network modules to extract spatial 

features to the fully connected layer. The data is then input into the TCN layer, 

and through dilated convolution and multiple residual connections, long-range 

dependencies in the sequence are captured, and various time series data 

problems are handled. The prediction results are output through the fully 

connected layer and fed back to the multi-modal sensor for real-time feedback. 

2.4 Mean-Square Error Loss Function 

The loss function is a key component in experiments on image analysis, 

effectively measuring the gap between the predictions of the model and the true 

labels (Yin et al., 2021). The mean-square error (MSE) loss function is 
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commonly used in model training for regression problems to measure the 

difference between the model’s predicted value and the true value (Miao et al., 

2021). The mathematical expression of the MSE loss function is as follows: 

MSE =
1

N
∑ (yi − y^)2N

i=1                         (7) 

N represents the number of samples; yi represents the true value; y^ 

represents the predicted value. MSE measures the gap between the model’s 

predictions and the actual results at each frame or time point and gradually 

optimizes the network so that the model’s predictions at each moment are 

closer to the actual action. This is crucial to ensure that the model precisely 

captures dynamic changes. In the early stages of training, there may be large 

deviations in model predictions. Using MSE can help the model converge faster, 

quickly adjust parameters, and reduce large errors, which is especially 

important when capturing subtle differences in actions such as waving, bending, 

and walking. 

2.5 Motion Performance Evaluation and Feedback Mechanism 

After feature extraction is completed, the system performs real-time 

evaluation based on key motion features, covering posture error and motion 

coherence (Bu, 2020). 

2.5.1 Posture Evaluation 

The position information of the key points of the joints is used to evaluate 

whether the posture of the movement is consistent with the standard posture. 

The posture quality is judged by calculating the angle deviation between key 

points, such as the knee angle and the height of the arm raised. 

2.5.2 Stability and Consistency Testing 

The continuity of joint movement is analyzed, and the stability during the 

movement is determined, such as the smoothness of gait and the shaking of 

knee joints. The system detects unstable motion signals through TCN and 

generates relevant feedback. 

2.5.3 Implementation of Feedback Mechanism 

According to the results of the motion performance evaluation, the 

system generates real-time feedback information to help users adjust their 

movements immediately (Van Hooren et al., 2020). The system displays the 

user’s motion score, posture error reminders, and improvement suggestions on 

the display screen, and issues a sound warning when the user performs an 

irregular movement, reminding him to pay attention to his postures. 
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3. Experimental Settings 

3.1 Hardware Configuration 

The computer used in the experiment is configured as an NVIDIA RTX 

3060 GPU desk computer, Intel i7 CPU, and 32GB memory. The camera used 

to collect data is configured as an Intel RealSense D435. The feedback 

equipment is a high-definition display and headphones. 

3.2 Data Preprocessing 

To realize the real-time feedback mechanism of motor function based on 

image analysis, this experiment selects HMDB51 and KTH as the initial data 

sets, supplemented with common daily action data. These data sets have high-

resolution action video samples, covering a variety of postures and action 

changes of human body movements, which are conducive to the model’s 

extraction and learning of motion features.  

The actions in the data set are divided into three groups of data related 

to motor function recovery, such as walking, bending, and arm swinging, with 

50 videos in each group. They are divided into a training set and a test set in a 

ratio of 8:2, and the data of 50 volunteers is used as the validation set. Figure 

5 shows some image data in the data set: 

 

Figure 5: Display of Some Image Data 

Model training settings: In the experimental training, the backbone 

feature extraction network selected is ResNet-50. Hyperparameter settings: 

The initial value of the learning rate of the CNN model is set to 0.0001, and the 

cosine annealing strategy (Cheng et al., 2023) is adopted to reduce the learning 

rate to control the training convergence speed. TCN model configuration: The 

time step is set to 8 frames; the number of TCN layers is set to 2 layers; the 

batch size is set to 1; the total number of training epochs is 50 for each group 

of data. Figure 6 displays the training results. 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 100 - ISSN: 1577-0354 

291 

 

Figure 6: Training Effect Curves 

At the beginning of training, both the test loss and the training loss drop 

rapidly. Around the 10th epoch, both the test loss and the training loss reach a 

low level. The test loss stabilizes at around 0.18, and the training loss stabilizes 

at around 0.24. The gap between the test loss and the training loss is not large. 

The model performs relatively consistently on the test set and the training set. 

3.3 Evaluation Criteria 

To measure the effectiveness of the model, this paper uses three 

indicators: accuracy, recall, and feedback time. TP represents the positive 

sample data with correct detection results; FP is the data that is incorrectly 

labeled as positive; TN is the number of negative classes correctly classified as 

negative by the model; FN is the number of positive classes misclassified as 

negative by the model. The calculation formula of Accuracy is: 

Accuracy =
TP+TN

TP+TN+FN+FP
                       (8) 

The calculation formula of recall R is: 

R =
TP

TP+FN  
                                          (9) 

Feedback time is the average time required for the model to process a 

single sample, usually expressed in milliseconds. T represents the total time 

required to process all samples (in milliseconds), and N represents the total 

number of samples. 

Inference Time=
T

N
                         (10) 
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4. Experimental Results 

4.1 Ablation Experiment 

Table 1 displays a comparison of the data obtained from ablation 

experiments on the training set for several mainstream object recognition 

algorithms. 

Table 1: Data Comparison of Ablation Experiments 

 ACCURACY RECALL FEEDBACK TIME (MS) 

CNN 76% 74% 340-400 

LSTM 83% 84% 360-430 

CNN-TCN 86% 87% 290-360 

 

Figure 7: Recognition Accuracy of Different Models for Different Actions on the Validation Set 

 

Figure 8: Normal Distribution of Feedback Time of Different Models 

Table 1 presents the comparison results of three models in terms of 

accuracy, recall and feedback time. Figure 7 displays the accuracy comparison 
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of different models in different actions on the validation set. Figure 8 shows the 

distribution diagram of feedback time of each model. The following results can 

be obtained from Table 1 and Figures 7 and 8. CNN achieves an accuracy (Acc) 

of 76% and a recall (R) of 74%, with a feedback time of 340ms-400ms. LSTM 

achieves an accuracy of 83% and a recall of 84%, with a feedback time of 

360ms-430ms. CNN-TCN model shows excellent performance, with an 

accuracy of 86%, a recall of 87%, and feedback time of 290ms-360ms, which 

are better than those of CNN and LSTM. On the validation set, the average 

accuracy of CNN is 78%; that of LSTM is 85%; that of CNN-TCN is 89% which 

is the highest among the three. Because the posture of the human body 

changes greatly in the action of bending, the accuracy of bending is the lowest 

among the three actions(Zhou et al., 2023). 

4.2 Test Data Display 

A total of 50 rehabilitation patients are recruited as volunteers in this test. 

This experiment aims to evaluate the functional performance of rehabilitation 

patients in three actions: walking, bending and waving, so as to understand 

their rehabilitation progress. Participants are tested in a laboratory environment 

on the following three actions: walking, bending, and waving, and repeating the 

training for 5 sets. During the test, sensors and real-time monitoring systems 

are used to evaluate each action in real time. Data is automatically recorded by 

a computer system, and real-time feedback is displayed through a visual 

interface. Participants can see their performance instantly and make 

adjustments during training. Tables 2, 3, and 4 are the specific data of the three 

actions in the experiment. 

Table 2: Specific Data of Walking Action 

MODEL ACTION CORRECT INCORRECT AVERAGE FEEDBACK TIME (MS) 

CNN Walking 201 49 377.55 

LSTM Walking 214 36 398.47 

CNN-TCN Walking 227 23 340.67 

Table 3: Specific Data of Bending Action 

MODEL ACTION CORRECT INCORRECT AVERAGE FEEDBACK TIME (MS) 

CNN Bending 187 63 385.22 

LSTM Bending 203 47 410.84 

CNN-TCN Bending 219 31 332.91 

Table 4: Specific Data of Waving Action 

MODEL ACTION CORRECT INCORRECT AVERAGE FEEDBACK TIME (MS) 

CNN Waving 211 39 373.68 

LSTM Waving 218 32 395.90 

CNN-TCN Waving 233 17 320.12 
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4.3 Test Results 

The experimental results show that when analyzing images of different 

actions, the accuracy of the CNN model is low, and the feedback time is 

relatively long. Its real-time feedback capability needs to be strengthened. The 

accuracy of LSTM is lower than that of CNN-TCN but higher than that of CNN. 

It processes long sequences slowly because it relies on previous information 

frame by frame, and the average feedback time is the longest, which limits its 

potential for real-time application. CNN-TCN has the highest accuracy among 

the three and the shortest feedback time. After applying TCN to CNN, the model 

can focus on both spatial and temporal information, thereby showing higher 

accuracy when processing dynamic action recognition. Its performance in 

accuracy and feedback time is much better than that of CNN and LSTM. 

5. Conclusion 

In summary, through the evaluation and research of the performance of 

different models, the CNN-TCN model is not only superior to CNN and LSTM 

in accuracy and feedback time, but also has better accuracy and feedback time 

than CNN and LSTM when performing image analysis on different movements, 

whether in the waving action with small movements or the bending action with 

large posture changes. The combination of image analysis technology and real-

time feedback mechanism can significantly improve the effect of the patients’ 

rehabilitation process. This shows that in motor function recovery training, the 

use of image analysis technology can help monitor the movement status of 

rehabilitation patients in real time and identify and feedback their movement 

performance in a timely manner, thereby providing strong support for the 

patients’ treatment.  

With the continuous advancement of computer vision and DL 

technologies, intelligent management of motor function recovery is gradually 

maturing. The real-time feedback mechanism can not only enhance the training 

efficiency of patients but also provide strong data support for the formulation of 

personalized rehabilitation plans. Evaluation methods based on image analysis 

can be more deeply integrated into the rehabilitation process, helping medical 

workers to better understand and optimize patients’ motion performance. 

Applying these advanced technologies to a wider range of rehabilitation 

scenarios can help promote the scientific, precise, and personalized 

development of motor function recovery, and ultimately improve patients’ 

overall rehabilitation experience and effects. 
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