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ABSTRACT 

In response to the problems of insufficient privacy protection and model 

performance in traditional athlete health data analysis models, this paper 

explored distributed model training methods based on the framework of 

federated learning. The paper first divided athlete data into time segmentation, 

body index segmentation, sports item segmentation, and environmental 

condition segmentation, and used transport layer security protocols and 

homomorphic encryption to protect data computation. When training the local 

model, a lightweight decision tree was selected for training; the dynamic 

weighted learning was used to aggregate the model; finally, differential privacy 

technology was applied to protect data privacy by adding Gaussian noise, and 

some optimization methods were used to improve model performance. In the 

third experiment of model performance, the precision of the model in this paper 

reached 98.45%. This indicated that the model had extremely high accuracy 

and reliability in classification and regression tasks. In the speedup ratio 

experiment, when the synchronization interval was 50 and the number of clients 

was 200, the speedup ratio of the model in this paper was 4.01, reflecting that 

the model can effectively improve training efficiency with the participation of 

multiple clients. In the privacy leakage risk test, the success rate of the model 

in this paper was the lowest under attack, at 1.5%, 2.3%, and 1.4%, respectively. 

Finally, in the model loss test, the model in this paper experienced the fastest 

decline in the initial stage, with a final convergence value of 0.3, which was the 

smallest among the tested models. The data showed that the model studied in 

this paper had good performance and privacy protection ability. 
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1. INTRODUCTION 

Today, the collection, storage, and analysis of athlete health data are 

very important. It is an integral part of improving athlete competitiveness and 

maintaining health. The era of big data has helped sports professionals 

effectively analyze athlete health data, but it has also brought about new 

problems: multiple data sources lead to model performance degradation; 

traditional centralized models lack personal privacy protection for athlete health 

data; data is prone to theft and tampering. These issues constrain the 

performance and security of data models, thereby affecting the training 

effectiveness and competitive performance of athletes (Sun et al., 2023). In 

order to protect data privacy during model training, scholars have conducted 

extensive research. The content of privacy protection has been extensively 

discussed in various models of machine learning (Kaissis et al., 2020; So et al., 

2021; Tan & Zhang, 2020). Niu C et al. used decomposition and specific 

mathematical methods to make predictions without revealing key parameters 

(Niu et al., 2020). They extensively evaluated the performance and low cost by 

using support vector machines on the short message service dataset. 

Kawamura A et al.  used encrypted-compressed images to protect privacy, 

and verified the effectiveness of this scheme in the face recognition experiment 

(Kawamura et al., 2020). Zhu L et al. utilized partial homomorphic encryption to 

implement multiple privacy preserving training protocols in aggregated 

scenarios, capable of dealing with collusion threats (Zhu et al., 2021). Strict 

security analysis and experimental verification have demonstrated its 

effectiveness and privacy preserving ability. Li X et al. proposed a prediction 

scheme for edge enhanced human physical systems, and achieved good 

results in security and privacy protection (X. Li et al., 2021). Arachchige P C M 

et al. applied PriMod Chain, which combined multiple techniques to protect data 

(Arachchige et al., 2020). Gupta R et al. proposed a model for classifying 

services in a cloud environment (Gupta & Singh, 2022).  

The privacy of data and classifiers was protected through 

communication protocols. Experimental results have shown that this model has 

high accuracy and privacy protection ability on large-scale datasets. Li T et al. 

proposed a server-assisted framework that supports learning tasks without the 

involvement of data owners and significantly reduces communication overhead 

(Li et al., 2020). The above research includes the exploration of technologies 

such as multi-party machine learning and differential privacy, with the aim of 

solving the problem of protecting data privacy in distributed environments. 

However, there is a lack of research on privacy protection of athlete data, and 

the security issue of model training by different data holders without sharing 
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data has not been addressed. Federal learning enables multiple organizations 

to use data in a manner that protects user privacy, ensures data security, and 

complies with regulations. Federated learning conducts model training in a 

distributed data environment with multiple participants, while protecting data 

privacy and security (Khan et al., 2021; Liu et al., 2022; Nguyen et al., 2021). 

Nguyen H T et al. proposed a fast convergent federated learning algorithm that 

optimizes the convergence speed and stability of model training through 

intelligent sampling and weight update device updates, in order to reduce 

communication and computational costs (Nguyen et al., 2020). Zhang T et al. 

discussed the opportunities and challenges of federated learning in IoT 

platforms and proposed methods to address these challenges, providing useful 

guidance for implementing various IoT applications (Zhang et al., 2022). Yu R 

et al. proposed a federal learning management-based approach to realize the 

flexible and efficient use of resources (Yu & Li, 2021). Gafni T et al. pointed out 

the importance of edge device data privacy protection and federated learning, 

and applied specialized solutions in signal processing and communication to 

address the challenges in federated learning (Gafni et al., 2022). Rieke N et al. 

considered the issues of medical data privacy and data silos, and explored 

potential solutions for federated learning in the future of digital health (Rieke et 

al., 2020). Pfitzner B et al. explored in depth the applicability of federated 

learning to confidential medical datasets (Pfitzner et al., 2021). Zhang Y et al. 

explored existing federated learning methods and proposed future directions 

(Zhan et al., 2021). These studies explored various directions of federated 

learning in model training, providing useful ideas and methods for solving 

distributed model training methods that protect the privacy of athlete health data. 

This paper improved the privacy protection and performance of traditional 

athlete data models through a federated learning framework. Firstly, the data 

was segmented and privacy was protected using security protocols and 

homomorphic encryption. A lightweight decision tree was used to train the local 

model, while dynamic weighted learning was used for model aggregation and 

privacy protection was enhanced by adding Gaussian noise. 

2. Privacy Protection Distributed Model Training Method 

2.1. Data Segmentation and Encryption 

The health data of athletes contains numerous categories, and the 

model processing is cumbersome, resulting in a long processing time. 

Therefore, data segmentation is required when processing athlete health data. 

Data segmentation refers to dividing logically unified data into separately 

managed physical units for storage, increasing the efficiency of the model in 

data indexing and scanning. Figure 1 shows the segmentation types for athlete 

health data in this paper: 
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Figure 1: Data Segmentation Types 

Figure 1 shows the data segmentation types used in this paper, including 

time segmentation, body index segmentation, sports item segmentation, and 

environmental condition segmentation. Time segmentation divides the health 

data of athletes into time periods, dividing them by day, week, or month 

according to different needs. Time segmentation is suitable for tracking the 

long-term health data of athletes, discovering their periodic changes in the body, 

and helping athletes develop long-term training or rehabilitation plans. Body 

index segmentation is commonly used in medical analysis. These indicators 

provide personalized health management and rehabilitation training directions 

for athletes. Sports item segmentation is the process of categorizing data 

according to different sports, which is divided into football, basketball, 

badminton, short distance running, and long-distance running in this paper. 

Different sports require the same type of data to be collected, but there are also 

some differences. In terms of heart rate, in football, heart rate exhibits periodic 

fluctuations because running, walking, and standing occur alternately during 

matches, and the game center rate is influenced by the game situation and 

personal mood. In sprint events, the heart rate exhibits sustained high intensity. 

By segmenting data based on sports events, it is possible to more precisely 

analyze the specific impact of each sport on the physical and skill development 

of athletes, and conduct targeted training and adjustments. Environmental 

condition segmentation classifies data according to different sports 

environments, and in this paper, it is divided into indoor, outdoor, sunny, rainy, 

and altitude. These environmental conditions affect factors such as temperature, 

humidity, wind speed, and light, and can be used to study the physical reactions 

and adaptation mechanisms of athletes in different environments. Health data 

has high sensitivity and privacy, especially for athletes. If health data of other 

athletes can be obtained, competitors may obtain their physical condition and 

training effectiveness, which seriously affects the fairness of competitive sports. 

The encryption of data during transmission and computation needs to be 

considered. When transmitting data, this paper chooses Transport Layer 

Security (TLS) protocol (Akbar & Iqbal, 2022) as the encryption technology 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 100 - ISSN: 1577-0354 

39 

during transmission. TLS protocol establishes a secure connection by using 

public key encryption algorithms to ensure data is protected during transmission. 

When performing calculations, this paper uses homomorphic encryption (Wang 

et al., 2020; Yan et al., 2020) technology for encryption, which provides higher 

protection for the privacy of athlete health data. Through homomorphic 

encryption, encrypted data can be computed without exposing plaintext data. 

2.2. Construction of Federated Learning Models 

The federated learning model makes the health data of each athlete 

need not leave the local, only need to pass the specific federated training 

algorithm and parameter exchange mechanism, and finally build a global 

sharing model. Federated learning can be divided into three types: horizontal 

federated learning, vertical federated learning, and federated transfer learning 

(ZHOU et al., 2021). Horizontal federated learning makes judgments based on 

features and is more suitable when the sample feature repetition rate is high 

and the sample repetition rate is low; vertical federated learning, on the other 

hand, is more suitable when the sample feature repetition rate is low and the 

sample repetition rate is high; federated transfer learning is different from the 

above two methods and is more suitable when the sample feature repetition 

rate and sample repetition rate are low. This paper chooses to use the method 

of horizontal federated learning (Hammoud et al., 2022). Because the health 

data of athletes has highly repetitive features, such as heart rate, step count, 

body temperature, etc., the repetition rate of sample features is high. However, 

when it comes to data from different athletes, each athlete is a unique individual, 

so the sample repetition rate is very low. The optimization objective of federated 

learning is similar to other machine learning algorithms: 

Fx =
1

n
∑ f(Si)
n
i=1                            (1) 

Among them, Fx represents the loss function of the federated learning 

model; n is the number of samples; Si represents the i-th sample individual; 

f(Si)  represents the loss function of the model on Si . Figure 2 shows the 

training process of the federated learning model: 

Server

A

B

C
Local 

model

No

Parameter 
convergence

Model 
aggregate 
average

Overall modelYes

 

Figure 2: Training Process of Federated Learning Model 
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Figure 2 shows the training process of the federated learning model. The 

training participants of different sports projects obtain their respective global 

models from the same server, namely A, B, and C in the figure, which have the 

same training objectives and standards. Subsequently, each training participant 

uses their local data for model training. The server aggregates and averages 

the trained models, and verifies the parameters of the aggregated models. If 

the validation parameters do not converge, they are returned to their respective 

local models for further training, and the models are re aggregated. If the 

validation parameters converge, the overall model construction is complete. 

2.3. Local Model Training 

Preprocessing is required before training local data, which includes 

handling missing and outliers in the data, as well as standardizing the data. This 

paper chooses the linear interpolation method (Fenglei et al., 2020) in 

interpolation to fill in missing values. Among them, linear interpolation only 

requires constructing a straight line through the coordinates of two data points, 

and an unknown point between these two data points can be estimated through 

linear interpolation. If the known data points are (x1, y1) and (x2, y2), then the 

linear interpolation formula is: 

y0 = y1 +
(x0−x1)

(x2−x1)
× (y2 − y1)                     (2) 

According to the above formula, (x0, y0) is the data point that fills the 

gap position with linear interpolation. The method for handling outliers in this 

paper uses the box plot method (Aghighi et al., 2022). Figure 3 is an example 

of a box plot. 

 

Figure 3: Example of Box Line Diagram 
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In Figure 3, this paper selects five sets of data (Aghighi et al., 2022; 

Akbar & Iqbal, 2022; Alrmali et al., 2023; Arachchige et al., 2020; Hammoud et 

al., 2022; Li et al., 2020; Liu et al., 2022; Rieke et al., 2020; Wang et al., 2020; 

Yu & Li, 2021; Zhan et al., 2021; Zhang et al., 2022), and (Chen et al., 2021; 

Gao et al., 2021) to draw box plots. The length of the box represents the range 

of variation for each set of data, and it can be seen that the box length of the 

fifth set of data (Chen et al., 2021; Gao et al., 2021) is significantly higher than 

that of the third set of data (Akbar & Iqbal, 2022; Wang et al., 2020; Zhan et al., 

2021). The horizontal line in the box represents the median in each set of data, 

and it can be seen that the median position in the first set of data is 10, 

corresponding to the median 10 in the first set of data. The line segments above 

and below the box are called tentacles, which are often determined by 

multiplying the quartile distance by a constant. When there is data outside the 

range of the tentacles, it is considered an outlier and removed or corrected. 

This paper uses the method of range standardization for data standardization. 

Scope standardization adjusts athlete health data to a specific range. If athlete 

heart rate changes are standardized, range standardization can be used to 

reduce the data to a reasonable heart rate range, such as [60, 200]. The 

calculation formula for range standardization is: 

x⃛ = a +
b−a

xmax−xmin
× (x − xmin)                       (3) 

Among them, x⃛ is the data that has been standardized and processed; 

[a, b] is the standardized range that needs to be scaled down; xmax and xmin 

are the maximum and minimum values in the original dataset. The advantage 

of range standardization is that it is simple and easy to understand, but it is 

highly sensitive to data. Whenever there are outliers, they stretch the maximum 

and minimum values, leading to distorted distribution of subsequent data. 

Therefore, before using range standardization, it is important to handle the 

issue of outliers. When training local models, the computing power of each 

participating device may vary, and some devices may have limitations in 

computing power. Therefore, it is necessary to use lightweight machine learning 

models as much as possible. Taking all factors into consideration, this paper 

chooses to use the decision tree (Alrmali et al., 2023) model for local model 

training. The training process of decision trees is simple, with features 

compared and information gain calculated each time the nodes are split. The 

cost is low, and it has high interpretability and strong resistance to overfitting. 

Therefore, it is very suitable for local model training of athlete health data. 

2.4. Model Aggregation 

In the process of federated learning, model aggregation involves 

updating the models of the training participants onto the overall model. However, 

each athlete’s health data has different characteristics and cannot be measured 
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using a unified weight. Therefore, this paper uses the method of dynamic 

weighted learning (Jing et al., 2023) to weight the datasets of each training 

participant. This method includes a local update module and an overall update 

module, and its framework is shown in Figure 4: 

Global aggregation 

update
Judgment weight Modified weight

Dynamic weighting

Select the training 

participant

Participant 1 Participant 2 Participant n

Weightage 1 Weightage 2 Weightage n

Calculated 

Euclidean 

distance

...

Obtain local 

model

Local update module

Global update module

 

Figure 4: Framework of Dynamic Weighted Learning 

As shown in Figure 4, in the local update module, when the model 

completes one round of training, the weight of the previous round is retained, 

and the weight of the new training participants is updated. The Euclidean 

distance between the weight of this round and the weight of the previous round 

is calculated, and the degree of offset of each local model is judged to obtain a 

new local model, which is then comprehensively aggregated. In the overall 

update module, the overall model is compared in weight for each round, and 

weights with smaller loss functions are selected for modification. After such 

dynamic weighting adjustments, the overall model of athlete health data is 

continuously optimized. The Euclidean distance is calculated. Firstly, the mean 

y̅  and standard deviation s of the data samples from each participant are 

obtained. Standardization is utilized to convert the components of each 

dimension into a unified standard, namely: 

Ẏ =
Y−y̅

s
                                 (4) 

Among them, Y is the original set of data samples, and Ẏ  is the 

standardized set of data samples. The Euclidean distance D between the 

weights of each sample is calculated after standardization, which is: 

D = √∑ (
ωn−ωn−1

sn
)n

n=1                          (5) 
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Among them, ωn is the current weight; ωn−1 represents the weight of 

the previous round; sn  is the variance of the current data sample. When 

analyzing athlete health data, there may be some extreme situations: the 

sample size of badminton athletes accounts for 90% of the total sample, while 

the sample size of long-distance runners only accounts for 10%. At this point, 

the overall model is being optimized towards the direction of badminton player 

data during the update process, which may overlook some features of long-

distance runners. Therefore, it is necessary to maintain dynamic weighting in 

each training cycle. When selecting weights, it is necessary to minimize their 

loss function values, namely: 

Fmin(ω) = ∑ Pi ×
i
i=1 fi(ω)                       (6) 

Among them, Fmin(ω) is the minimum value of the loss function for the 

overall model weight; i is the number of training participants; Pi  is the 

probability that the i-th participant is selected for training; fi(ω) is the minimum 

value of the local model weight loss function for the i-th participant. As the 

number of participants increases, the loss function value of the overall model 

weight is constantly changing, which implements a dynamic weighting process 

and helps the model obtain the global optimal solution. 

2.5. Differential Privacy Protection 

When training the overall model, federated learning is susceptible to 

inference attacks (Gao et al., 2021), resulting in athlete data leakage and 

affecting competitive fairness and personal privacy. In addition to encrypting the 

data, this paper uses differential privacy to ensure that the identity of athletes 

is not recognized, and to ensure that the dataset can be used for statistical 

analysis. Differential privacy (Chen et al., 2021; H. Li et al., 2021) is a 

cryptographic technique that can reduce identification operations when 

querying databases while improving query accuracy. In differential privacy, 

random noise is added to the data to protect privacy. This paper chooses to add 

Gaussian noise to achieve differential privacy protection. Assuming the 

probability density function of the Gaussian distribution is G(σ), its expression 

is: 

G(σ) =
1

√2π
exp(

1

2σ2
)                           (7) 

Among them, σ is the Gaussian distribution N (0,σ2). The sensitivity of 

Gaussian noise calculation is calculated using the L2 norm method in this paper. 

The sensitivity calculation method for the overall model is: 

S = ‖F(θ) − F(θ̃)‖
2
                            (8) 
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Among them, S represents sensitivity; θ is the parameter of the overall 

model; F(θ) is the corresponding loss function; F(θ̃) is the loss function after 

adding random noise. By calculating the L2 norm of the parameter change 

vector, the sensitivity of the overall model in the parameter space, that is, the 

degree of response to parameter changes, is evaluated. Figure 5 shows the 

situation of adding Gaussian noise during overall model training: 

 

Figure 5: Schematic Diagram of Adding Gaussian Noise 

The upper part of Figure 5 shows the original loss function of the overall 

model and the loss function with added noise. It can be seen that after adding 

noise, the loss function deviates from its original position on most nodes. The 

application of noise changes the path of model optimization and also increases 

the difficulty of identifying athlete identities in the original data. The following 

figure in Figure 5 shows the amplitude of Gaussian noise. After adding 

Gaussian noise to the overall model function, if certain specific distributions are 

ignored, the privacy loss is directly added up, resulting in a loose privacy 

boundary. The solution of privacy loss involves quantifying the degree of privacy 

leakage and evaluating it through privacy loss measurement. This paper uses 

conditional mutual information to measure privacy loss. Conditional mutual 

information is a method in information theory that measures the coexistence or 

dependency relationship between two random variables. Assuming there are 

three random variables X, Y, and Z, the conditional mutual information I(X; Y|Z) 

is defined as: 

I(X; Y|Z) = ∑ ∑ ∑ P(x, y, z)z∈Zy∈Yx∈X log
P(x,y|z)

P(x|z)P(y|z)
             (9) 
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Among them, P(x, y|z) represents the probability of X=x and Y=y under 

the premise of Z. P(x|z)  and P(y|z)  represent the marginal probability 

distribution of X and Y at this time. The smaller I(X; Y|Z) , the lower the 

correlation between X and Y, and the smaller the privacy loss. 

2.6. Model Optimization 

When training distributed models, it is not only necessary to ensure 

model convergence, but also to consider the performance of the model. This 

paper adopts certain technical means to optimize the model. In order to reduce 

the communication overhead from the local model to the overall model, this 

paper uses compression techniques to compress the parameters of each local 

model. The integrity of athlete health data is crucial for the understanding of the 

model. This paper chooses Huffman encoding in lossless compression to 

compress the data. Huffman encoding marks data bytes by constructing a 

Huffman tree and encodes them based on the frequency of byte occurrence. 

Assuming Oi  is the frequency of the i-th byte and Li  is its length, then its 

Huffman encoding length LHuffman is: 

LHuffman = ∑ Oi × Li
m
i=1                          (10) 

Among them, m is the number of characters. The adjustment of learning 

rate is very important, and this paper chooses to apply a dynamic learning rate 

adjustment mechanism to improve the convergence speed and performance of 

the model. RMSprop (Root Mean Square Propagation) is an algorithm that uses 

the exponential decay average of historical gradients to adaptively adjust 

learning rates. It solves the problem of premature decay in some dynamic 

adjustment learning rate algorithms. The learning rate update rule in RMSprop 

is: 

Rt+1 =
Rt

√E[g2]t+∁
                             (11) 

Among them, Rt is the learning rate at time t; Rt+1 is the learning rate 

for the next moment; E[g2]t is the weighted average of historical gradients; ∁ 

is a constant, taken between 10−8  and 10−6 . To prevent overfitting in the 

model, L1 regularization is added to the loss function in this paper. L1 

regularization term is added to F(θ) in the loss function: 

J(θ)＝F(θ) + τ∑ |θｉ|
ｉ

ｉ＝１
                    (12) 

Among them, J(θ) is the modified loss function; F(θ) is the original loss 

function; θ is the parameter of the overall model; i is the number of parameters. 

For the model selection of each training participant, the overall model prioritizes 

selecting local model data upload parameters with fast data update frequency 
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and high data quality. This ensures that the overall server obtains high-quality 

information and improves the performance of the overall model. 

3. Evaluation of Privacy Protection Effectiveness and Model Performance 

3.1. Datasets 

In the study, real athlete data involves personal privacy and sensitive 

information. Therefore, in this study, some health data datasets are used 

instead of athlete data. PhysioNet is a database that provides physiological 

signals that can be used to analyze health conditions. Fitness Tracker Data is 

a dataset generated by the fitness tracker, which includes information such as 

step count, heart rate, sleep, etc. Electronic Health Records is a medical record 

dataset that includes diagnostic, treatment, and medication information. The 

federated learning model is trained and tested using the above dataset. 

3.2. Model Performance Tests 

In order to test the performance of the federated learning distributed 

model in this paper, 1000 labeled data samples are selected in the dataset for 

testing the model’s classification and regression metrics. The test indicators 

include accuracy A, precision P, recall R, and F1 value. Meanwhile, models 

established by K-Means Algorithm (KMA), PageRank Algorithm, and Support 

Vector Machine (SVM) are applied for comparative experiments. The 

experiment is conducted three times, and the results obtained are shown in 

Table 1: 

Table 1: Performance Tests of Each Model 

INDEX A (%) P (%) R (%) F1 SCORE  

EXPERIMENT 1 

MODEL OF THIS PAPER 90 90.58 88.31 0.89 

KMA 86 83.79 86.33 0.85 

PAGERANK 86.5 82.74 86.77 0.85 

SVM 89.1 89.14 87.01 0.88 

EXPERIMENT 2 

MODEL OF THIS PAPER 93.8 91.99 94.44 0.93 

KMA 75.2 85.27 60.56 0.71 

PAGERANK 86 85.84 83.22 0.85 

SVM 86.5 84.18 86.93 0.86 

EXPERIMENT 3 

MODEL OF THIS PAPER 96.55 98.45 93.47 0.96 

KMA 84 84.36 81.14 0.83 

PAGERANK 88.5 87.75 87.17 0.87 

SVM 86 86.03 83.83 0.85 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 100 - ISSN: 1577-0354 

47 

Table 1 shows the performance indicators of each model in three 

experiments. Overall, the model of this paper performs better than other models 

in various indicators. In the third experiment, the accuracy, precision, recall, and 

F1 values reach 96.55%, 98.45%, 93.47%, and 0.96 respectively, which are the 

highest among all test results. In the second experiment, the KMA model 

performs poorly with an accuracy of 75.2% and a recall rate of only 60.56%. 

The performance index is very low, and it differs significantly from its 

performance in the other two experiments due to overfitting issues that occurred 

during the process, resulting in poor performance. The experimental results 

demonstrate that the model proposed in this paper performs well in regression 

and classification when processing athlete health data. 

3.3. Speedup Ratio Experiment 

In distributed model training, the synchronization interval refers to the 

time interval between the local model parameters of the training participants 

after the overall model is updated. There is a client for each participant’s local 

model, and during the synchronization interval, the client updates the operation. 

When updating, the client uploads the updated model parameters to the central 

server for overall model updates. The synchronization interval affects the 

overall performance of the model. Six different synchronization intervals are set 

in the experiment, namely 1, 5, 10, 15, 20, and 50. When the synchronization 

interval is 1, it means that each client immediately synchronizes the model 

parameters with the server after local updates. This has the advantage of 

accelerating the overall model convergence, but it increases communication 

overhead because each client needs to communicate frequently with the server. 

As the synchronization interval increases, the convergence speed of the overall 

model slows down, and the communication overhead also decreases. The 

experiment tests the speedup ratio of four models in a distributed structure with 

different synchronization intervals as the number of clients changes. The 

speedup ratio is defined as the ratio of the convergence time of the distributed 

structure model to the benchmark convergence time. The results obtained are 

shown in Figure 6: 
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Figure 6: Statistical Results of Speedup Ratio Experiment 

Figures (a) to (f) in Figure 6 represent the speedup ratios of each model 

as the number of clients varies with synchronization intervals of 1, 5, 10, 15, 20, 

and 50, respectively. Observing Figure 6, it can be seen that under the same 

synchronization interval conditions, the speedup ratio of each model increases 

rapidly with the increase of clients. This is because more clients participate in 

training, and the overall convergence speed of the model increases. When the 

number of clients increases to a certain extent, the increase in speedup ratio 

becomes slow because adding too many clients also increases communication 

overhead and synchronization time, offsetting the overall computational power 

improvement of the model.  

Meanwhile, increasing the synchronization interval can also slightly 

increase the speedup ratio. The speedup ratio of this model increases the most 

with the increase of clients. When the synchronization interval is 1 and the 

number of clients is 200, the speedup ratio of this model is 3.57. When the 

synchronization interval is 50 and the number of clients is 200, the speedup 

ratio of this model is 4.01. The experimental results demonstrate that the model 

in this paper still has good convergence speed when there are a large number 

of clients and a large synchronization interval. When calculating athlete health 

data, it can reduce the number of communications and reduce the risk of 

privacy leakage. 

3.4. Privacy Leakage Risk Testing 

To evaluate the effectiveness of federated learning in protecting athlete 

health data privacy, this study tests the effectiveness of the model in this paper 

by simulating three types of attacks. The three types of attacks are: member 

inference attack, model reverse engineering attack, and data leakage attack. 

Member inference attacks attempt to infer specific athlete data from the dataset; 

model reverse engineering attacks attempt to infer the physiological 

characteristics of athletes from pre trained models; data leakage attacks 

attempt to intercept data during the transmission process of the model. The 
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experimental setup involves 1000 attacks of three types on each of the four 

models, and calculates the success rate and average attack time of the attacks. 

The obtained results are shown in Table 2: 

Table 2: Test Results for Various Types of Attacks 

TYPES OF 

MODELS 

ATTACK 

TYPES 

NUMBER OF 

SUCCESSFUL 

ATTACKS 

NUMBER OF 

FAILED 

ATTACKS 

ATTACK 

SUCCESS 

RATE (%) 

MEAN 

ATTACK 

TIME(S) 

MODEL OF 

THIS 

PAPER 

A 15 97 1.5 85.2 

B 23 95 2.3 90.5 

C 14 86 1.4 100.8 

KMA A 124 88 12.4 55.4 

B 139 87 13.9 45.9 

C 151 85 15.1 50.6 

PAGERANK A 213 79 21.3 49.3 

B 118 89 11.8 34.6 

C 137 87 13.7 57.4 

SVM A 129 88 12.9 67.1 

B 172 83 17.2 72.4 

C 134 87 13.4 66.7 

Table 2 shows three types of attacks: member inference attack, model 

reverse engineering attack, and data leakage attack, represented by A, B, and 

C, respectively. The model in this paper performs best in resisting three types 

of attacks, with the least number of successful attacks. The success rates of 

the three attacks are 1.5%, 2.3%, and 1.4%.  

The PageRank model performs the worst in resisting member inference 

attacks, with a success rate of 21.3%. The average attack time represents the 

efficiency of attackers in obtaining information, and the longer the time, the 

better the security of the model. The average attack time of the model in this 

paper is the longest, especially when resisting data leakage attacks, with an 

average attack time of 100.8 seconds. The experimental results demonstrate 

the excellent performance of this paper in protecting the privacy of athlete 

health data, providing reliable protection for the data. 

3.5. Model Loss Experiment 

In order to test the training convergence performance of the model in this 

paper, four algorithms are set up under the same conditions to record the 

changes in the loss function as the training period increases. The values of the 

loss function are recorded, and the results obtained are shown in Figure 7: 
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Figure 7: Changes in Loss Function 

Figure 7 shows the variation of the loss functions of each model with the 

training period of the model. As the training period increases, the loss function 

first rapidly decreases, then slowly decreases, and finally converges. It can be 

seen that the model in this paper learns the features of the data very quickly, 

so the loss function decreases the fastest in the initial stage, followed by the 

PageRank model, and the SVM model decreases the slowest. When the model 

converges, the convergence value of the model in this paper is also the smallest, 

with a convergence value of 0.3. Although the descent speed of the KMA model 

is slightly slower than that of the PageRank model, the final convergence value 

is 2, which is lower than the PageRank model’s 2.9. The experiment proves that 

the model in this paper has a fast convergence speed and low convergence 

value during training, reflecting good convergence performance. 

4. Conclusions 

This paper was based on the federated learning framework and 

investigated a distributed model training method for athlete health data, with the 

aim of addressing the shortcomings of traditional athlete health data analysis 

models in terms of privacy protection and model performance. By segmenting 

athlete health data, the model processing efficiency can be improved. The 

encryption technology was used to protect data transmission and computing 

security. Lightweight models were chosen to process data and train local 

models. During the model aggregation phase, dynamic weighted learning 

methods were used to optimize model updates. The differential privacy 

technology was applied, and the Gaussian noise was added to protect data 

privacy and improve query accuracy. The experimental results showed that the 

model proposed in this paper outperformed models such as KMA, PageRank, 

and SVM in performance indicators such as accuracy, precision, recall, and F1 

value. At the same time, it exhibited high efficiency and security in speedup 

ratio experiments and privacy leakage risk tests. Slightly insufficient is that this 
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paper did not study the specific computational cost of the model, and the 

computational performance without considering cost resulted in a lack of 

comprehensive consideration of the model. It is hoped that in the future, more 

expert suggestions can be combined to improve the research gap in this area. 
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