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ABSTRACT 

The aim of this study is to enhance the efficacy of sports teaching movements 

and to promptly correct erroneous forms, by integrating artificial intelligence (AI) 

and deep learning technologies into the recognition of sports movements. This 

paper commences by computing the correlation matrix for a set of selected 

features, subsequently establishing a threshold to eliminate features with high 

cross-correlation, thereby reducing redundancy and optimizing the feature set. 

To preprocess the imagery, a Gaussian function is initially applied to perform 

convolution operations. Subsequently, a Gaussian kernel function is utilized to 

filter the images, constructing a hierarchical structure known as the Gaussian 

pyramid, wherein variable Gaussian filter coefficients are employed at each 

level of image processing. Ultimately, this research develops a precise 

calibration system for physical education movements and implements it within 

the context of physical education to enhance teaching outcomes. The 

experimental results demonstrate that the system developed in this study 

effectively satisfies the practical requirements of physical education.  

KEYWORDS: Artificial Intelligence; Deep Learning; Physical Education; 

Movement; Precise School Position. 

1. INTRODUCTION 

The general steps of video behaviour recognition include three main 
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parts: video preprocessing, feature extraction and feature classification. In the 

video preprocessing part, it is usually necessary to separate the actors making 

movements in each frame from the background environment (Ferguson et al., 

2019). The foreground of each frame is extracted through the Gaussian mixture 

model for background modelling. After extracting the foreground of each frame, 

we must consider how to express the features of the video samples effectively. 

If the features abstracted from the video samples can distinguish the 

characteristics of different behaviors well, then the classification will have a 

multiplier effect. A video itself is a high-dimensional data related to time, space, 

and frequency (color). It is a complicated task to directly obtain useful features 

from it. Using MHI to express the movements in the sample video in a two-

dimensional form is an effective method (Kimasi et al., 2019).Although 

acquiring MHI has high requirements on the video background, considering that 

most of the surveillance camera equipment is in a static state, the extracted 

video background is relatively single. Therefore, MHI still has stricter application 

conditions. After converting the video samples into MHI, image recognition and 

classification techniques can be used for behavior recognition. In the classifier 

stage, this paper will mainly test k-nearest neighbors, SVM and nuclear non-

linear classification methods (Reinhart & Wichmann, 2020). Upon securing a 

video sample, the initial analytical step involves the extraction of dynamic 

subjects from the static background, a process referred to as foreground 

detection, which is essential for subsequent action feature extraction and 

classification. In scenarios where surveillance is conducted using a stationary 

camera, the backdrop is relatively invariant and can be predefined. The moving 

targets within the frame, such as pedestrians or vehicles, constitute the primary 

area of interest. To segment these foreground objects from the background, 

background modelling is conducted, followed by a comparison between the 

current frame and the established background model to identify moving objects. 

Foreground extraction is a fundamental component of intelligent surveillance 

systems. Various techniques are employed for foreground detection, including 

the frame difference method, median filter method, optical flow method, 

background statistical model method, and the codebook model. Foreground 

detection is applicable in two primary environments: with a stationary camera 

and with a moving camera. When the camera is in motion, the optical flow 

method is often the preferred approach for foreground detection. This method 

calculates the optical flow field of the image sequence to infer the camera's 

motion state. However, due to the computational demands of the optical flow 

method, real-time processing is challenging. In the majority of surveillance 

settings, the camera remains stationary, eliminating the need for extensive 

optical flow calculations. The Gaussian Mixture Model (GMM), one of the 

background statistical model methods employed in this study, is particularly 

suited for distinguishing between the background and foreground in video 

sequences captured by a stationary camera. This method provides an effective 

approach for background subtraction in static camera surveillance scenarios. 
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This paper applies artificial intelligence technology and deep learning 

technology to sports movement recognition, and combines intelligent 

technology to perform sports teaching auxiliary work, improve the accuracy of 

sports movement recognition, and lay the foundation for subsequent smart 

sports teaching. 

2. Related Work 

In the past ten years, great progress has been made in the field of 

movement recognition. Various movement recognition systems have emerged 

and many of them have been put into practical use. These systems have 

penetrated into all areas of people's lives. It is generally divided into single-

sensor-based research (Abanazir, 2019) and multi-sensor-based data fusion 

(Gerke et al., 2018).Literature (Pogrebnoy & Komlev, 2018) proposes a method 

to recognize simple daily human activities in an environment that is not affected 

by location by using the built-in sensor of a smartphone. This algorithm can 

solve the problem that users can freely switch the position of the smartphone, 

and improve the recognition rate by using a combination of different sensors 

and a deep neural network to classify and remove transitional data. The final 

recognition rate can reach 93%. The literature (Ilies et al., 2018) developed a 

smart home system based on multi-sensor data fusion technology and its smart 

monitoring interface. The system uses a number of different types of sensors 

(inertial sensors, temperature sensors, light sensors) to realize human motion 

recognition, fire detection, and temperature monitoring in smart homes. The 

literature (Kondrukh, 2017) used accelerometers, gyroscopes and magnetic 

sensors for data complementary fusion, greatly improving human body 

gestures recognition. The literature (Sá et al., 2015) proposed real-time 

processing of data to achieve real-time dynamic detection of daily behaviours 

for the battery life and memory limitation of smart phoneature (Komisar et al., 

2017), solving two major problems that affect the recognition rate: zero drift and 

sensor orientation change. In the recognition system based on inertial sensors, 

the change of the wearing direction of the sensor will directly affect the 

recognition accuracy of the system. It proposes a method that combines the 

constant gravity in the vertical direction and the static state value, which greatly 

reduces the error caused by the change of the sensor wearing direction and 

improves the recognition rate. The literature (Sá et al., 2015) proposed real-

time processing of data to achieve real-time dynamic detection of daily 

behaviours for the battery life and memory limitation of smartphone terminals. 

Moreover, it used sensors such as the accelerometer, gyroscope and magnetic 

field meter of the smartphone to perform data fusion at the feature level, and 

adopted a low-complexity classification algorithm to achieve a high recognition 

rate. In addition, it verified that the combination of accelerometer and gyroscope 

shows the best fusion effect through a combination of multiple sensors and 

showed that the increase in frequency domain features does not greatly 

improve the recognition rate but will occupy a large amount of memory. The 
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study referenced as (Ángel-López & de la Peńa, 2015) integrates information 

fusion techniques into context-aware systems, proposing a novel multi-sensor 

fusion approach that is predicated on the time evidence theory for the purpose 

of recognizing indoor activities. This approach extends the traditional 

Dempster-Shafer (D-S) evidence theory by incorporating a temporal dimension, 

which is instrumental in enhancing the accuracy of activity recognition within a 

multi-sensory setup. The method is designed to incrementally resolve conflicts 

and is particularly effective in applications aimed at aiding daily life, such as life 

assistance systems. In literature (Kim et al., 2015), accelerometers and 

gyroscopes in wearable devices are used to recognize daily behaviors such as 

standing, walking, running, jumping, up and down stairs, etc. The recognition 

rate can reach about 85%. In addition, the multi-sensor fusion system occupies 

an important position in the field of action recognition due to its robustness and 

stability. Literature (Zhi-Min & Zhong-Wen, 2015) improves the system's 

robustness by fusing multi-source heterogeneous sensor data, and applies 

fuzzy logic information fusion algorithms to In the fusion architecture, human 

behavior is recognized, and feature layer fusion is performed to improve the 

recognition rate. However, the disadvantage of these algorithms is that the 

higher feature dimensionality leads to the increase of algorithm complexity. 

Therefore, the use of principal component analysis, linear discriminant analysis 

and other algorithms to reduce the feature dimensionality is a common method 

in practical applications (Khan, 2017). There have been some achievements in 

domestic research on action recognition, but there is still room for innovation in 

feature extraction and the establishment of classification models. Literature 

(Puupponen et al., 2015) explored the contribution of wrist-worn multi-sensor 

for elderly activity recognition, and found that the combination of accelerometer 

sensor and heart rate data can be used to improve the classification and 

recognition of elderly activity. Here, a genetic algorithm-based approach is 

proposed. The method of fusion weight selection uses genetic algorithm to find 

the fusion weight, and the fusion result can reach about 98% of the recognition 

rate of the simple daily actions of the elderly. Literature (Lee & Yoo, 2017) 

recognizes the actions when playing table tennis, such as rubbing the ball, 

attacking the ball, and pushing the gear. The fixed threshold is used to 

determine the start and end points of the acceleration signal and extract the 

signal's characteristics through the processing of the three-axis acceleration 

signal. The classification algorithm of K nearest neighbors and decision tree is 

used to recognize it. The result shows that the action when hitting a table tennis 

can be recognized quickly and effectively, but the disadvantage is that there 

may be redundant features, so the feature selection algorithm is also the 

direction of improvement in the future. All in all, in the past ten years, the 

research on action recognition at home and abroad has made great progress, 

but it is difficult to achieve accurate recognition of complex human behaviors, 

and most systems cannot perform real-time and effective active monitoring and 

the algorithm complexity is relatively high. Therefore, the balance between 
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recognition accuracy and algorithm complexity remains to be studied. 

3. The Application of Artificial Intelligence Deep Learning Technology in 

Sports Teaching Movement Recognition 

Generally, the radial basis function is defined as 𝛷(𝑥, 𝑦) = 𝜙(‖𝑥 − 𝑦‖), 

where ‖𝑥‖ represents the Euclidean norm. A necessary condition of the radial 

basis function is: when ‖𝑥1‖ = ‖𝑥2‖, there must be 𝛷(𝑥1) = 𝛷(𝑥2). Among the 

common radial basis functions, the Gaussian type is the most commonly 

used(Zhang et al., 2020). 

The Gaussian distribution function of the Kriging method is 𝜙(𝑟) = 𝑒
−
𝑟2

𝜎2. 

Hardy's M-Q inverse function is 𝜙(𝑟) = (𝑐2 + 𝑟3)𝛽  or 𝜙(𝑟) = (𝑐2 +

𝑟3)−𝛽. 

Duchon's thin plate spline function is 𝜙(𝑟) = 𝑟2𝑘 𝑙𝑛(𝑟) or 𝜙(𝑟) = 𝑟2𝑘+1.  

The above-mentioned radial basis functions all have the characteristic 

of radial symmetry, and when the function deviates from the center of the 

function, the value of the function decreases very quickly, and the rate of 

decrease is proportional to the strength of the selectivity(Liu & Hodgins, 2018). 

In practical applications, RBF networks have two structures: regularized 

networks and generalized networks. The generalized network can relax this 

condition to as few samples as possible. Regularized network is a universal 

ability (Li et al., 2021). As long as the training sample is large enough, in theory, 

any multivariate continuous function can be approximated with arbitrary 

precision, and for any unknown nonlinear function, there is always a set of 

coefficients to make the network approach the most Optimization, although this 

makes its approximation performance theoretically guaranteed.  The network 

structure is shown in Figure 1. 

 

Figure 1: Generalized RBF network structure 
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Here, we assume that the generalized network has M input nodes, and 

the number of hidden layer nodes is I. The characteristic that is different from 

the regularized network is that I<M, the basis function of the i-th node in the 

hidden layer is 𝛷(‖𝑋 − 𝑋𝑖‖) , the center of the basis function is 𝑋𝑖 =

[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚] , the number of neurons in the output layer is ,, and the 

threshold 𝛷0 is added here.Its output is 1, and the connection weight is 𝜔𝑜𝑗. If 

the actual output is set as 𝑌𝑘 = [𝑦𝑘1, 𝑦22, . . . , 𝑦𝑘𝑗 , . . . , 𝑦𝑘𝐽] and , is the number of 

output units, when the training sample Xk is input, the output of the j-th neuron 

in the output layer is as shown in formula 1(Liu et al., 2020).  

𝑦𝑘𝑗 = 𝜔𝑜𝑗 + ∑ 𝜔𝑖𝑗𝜙(𝑋𝑘, 𝑋𝑖)
𝐼
𝑖=1 . 𝑗 = 1,2, . . . 𝐽               (1) 

If the Gaussian radial basis function is used, then 

𝜙(𝑋𝑘, 𝑋𝑖) = 𝐺(𝑋𝑘, 𝑋𝑖) = 𝐺(‖𝑋𝑘 − 𝑋𝑖‖)               (2) 

𝐺(‖𝑋𝑘 − 𝑋𝑖‖) = 𝑒𝑥𝑝 (−
1

2𝜎2
‖𝑋𝑘 − 𝑋𝑖‖)               (3) 

RBF learning is different from a general neural network. It is by 

continuously adding neurons to the hidden layer until the setting error is 

reached. This saves time and converges faster than a general neural network 

using all samples for training. 

(1) Randomly select a fixed center: The rudimentary learning strategy 

entails the selection of a fixed center, with the primary objective being the 

establishment of connections between the hidden and output layers through 

weighted associations. This strategy employs the standard deviation and center 

of a predefined basis function. The center of the hidden layer's basis function 

is randomly selected from the input training dataset and is thereafter considered 

constant. Once the center is ascertained, the standard deviation of the basis 

function is derived as delineated in the following equation (Wang et al., 2017): 

𝜎 =
𝑑𝑚𝑎𝑥

√2𝑛
𝜙(𝑟) = 𝑒

−
𝑟2

𝜎2                        (4) 

When the center and standard deviation of the basis function are 

determined, the basis function can be expressed as: 

( )
2

2

max

1
exp , 1,2,...,k i k iX X X X i n

d


 
− = − − = 

                   (5) 

When the basis function is obtained, the output weight 𝜔 is calculated 

by the pseudo-inverse method. Here, we assume that 𝑑𝑘𝑗  is the expected 
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output of the j-th output node for the k-th input vector, and 𝜔𝑖𝑗 is the connection 

weight from the i-th node in the hidden layer to the j-th node in the output layer. 

Then, the expected output weight matrix can be expressed as (Bao et al., 2020): 

𝜔 = 𝐺+𝑑                                (6) 

Among them, 𝐺 = {𝑔𝑘𝑖} , and 𝜔 = 𝜔𝑖𝑗, and 𝐺+ represents the pseudo-

inverse matrix of G, which can be solved by singular value decomposition. The 

specific calculation of 𝑔𝑘𝑖 is as follows: 

𝑔𝑘𝑖 = 𝜙(‖𝑋𝑘 − 𝑋𝑖‖
2), 𝑘 = 1,2, . . . , 𝐼                 (7) 

(2) Orthogonal least squares method: Orthogonal Least Square (OLS) is 

an important method of learning weights for RBF networks. First, when it 

assumes that the output layer has only one node, it compares the basis function 

network to a special case of linear regression: 

𝑑(𝑛) = ∑ 𝑝𝑖𝜔𝑖
𝐼
𝑖=1 + 𝑒(𝑛), 𝑛 = 1,2, . . . , 𝑁              (8) 

Among them, the number of hidden layer nodes is I, the number of input 

training samples is N, and 𝜔𝑖 is the weight from the i-th node of the hidden 

layer to the output node (here it is assumed that there is only one output node). 

d(n) is the expected output value of the network, e(n) is the network error, and 

𝑝𝑖(𝑛) is the model regression factor. When the Gaussian function is selected 

as the basis function, 𝑝𝑖(𝑛) is expressed as follows: 

𝑝𝑖(𝑛) = 𝑒𝑥𝑝 (−
1

2𝜎2
‖𝑋𝑛 − 𝑡𝑖‖

2)                     (9) 

It is expressed in matrix form as: 

𝑑 = 𝑃𝑤 + 𝑒
𝑑 = [𝑑1, 𝑑2, . . . , 𝑑𝐾]

𝑇

𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝐼]
𝑇

𝑃 = [𝑝1, 𝑝2, . . . , 𝑝𝐼]
𝑇

𝑝𝑖 = [𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝐾]
𝑇

𝑒 = [𝑒1, 𝑒2, . . . , 𝑒𝐾]
𝑇 }

  
 

  
 

                         (10) 

Here, 𝑑 = 𝑃𝑤 + 𝑒  can be solved by orthogonal triangular 

decomposition matrix P. 

𝑃 = 𝑈𝐴                                (11) 

Then, for the matrix U, the diagonal matrix H can be obtained by formula 

(12). 

𝑈𝑇𝑈 = 𝐻                             (12) 
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Through the above derivation, we can get: 

𝑑 = 𝑃𝑤 + 𝑒 = 𝑈𝐴𝑤 + 𝑒 = 𝑈𝑔                  (13) 

When both sides are multiplied by matrix 𝑈𝑇 at the same time, we can 

get: 

𝑈𝑇𝑑 = 𝑈𝑇𝑈𝑔 = 𝐻𝑔                        (14) 

Then, by continuing to solve, we can get: 

𝑔 = 𝐻−1𝑈𝑇𝑑                          (15) 

So far, according to the principle of least squares method, Aw = g, A and 

g have already been obtained, and then the connection weight w can be 

calculated.      

(3) Supervised selection center: This learning strategy determines 

cluster centers and other parameters through supervised learning. In the 

supervised selection center method, the cost function is defined as(Bhat et al., 

2021): 

2

1

1

2

N

K

K

E e
=

= 
                             (16) 

Among them, E is the output error of a certain node, N is the number of 

training samples, and 𝑒𝑗 is the error between the output result of the j-th input 

training data through the network and the actual expected result.  

𝑒𝑘 = 𝑑𝑘 −∑ 𝜔𝑖𝐺
𝐼
𝑖=1 (‖𝑋𝑘 − 𝑡𝑖‖𝐶𝑖)             (17) 

I is the number of hidden layer nodes in the network structure. In the 

training and learning process, the gradient descent method is used to find the 

free parameters 𝑡𝑖, 𝜔𝑖 and 𝛴𝑖
−1 (related to 𝐶𝑖, denoted by 𝑆𝑖 in the following 

derivation) to minimize the cost function, then the network parameter 

optimization formula can be derived as follows: 

a) The output weight is 𝜔𝑖, 

𝜕𝐸(𝑛)

𝜕𝜔𝑖(𝑛)
= ∑ 𝑒𝑘(𝑛)𝐺(‖𝑋𝑘 − 𝑡𝑖‖𝐶𝑖)

𝑁
𝑘=1               (18) 

𝜔(𝑛 + 1) = 𝜔𝑖(𝑛) − 𝜂1
𝜕𝐸(𝑛)

𝜕𝜔𝑖(𝑛)
, 𝑖 = 1,2, . . . , 𝐼           (19) 

b) The center of the hidden layer is ti, 
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𝜕𝐸(𝑛)

𝜕𝜔𝑖(𝑛)
= 2𝜔𝑖(𝑛)∑ 𝑒𝑘(𝑛)𝐺

′ (‖𝑋𝑘 − 𝑡𝑖‖𝐶𝑖𝑆𝑖(𝑋𝑘 − 𝑡𝑖(𝑛)))
𝑁
𝑗=1        (20) 

𝑡𝑖(𝑛 + 1) = 𝑡𝑖(𝑛) − 𝜂2
𝜕𝐸(𝑛)

𝜕𝑡𝑖(𝑛)
, 𝑖 = 1,2, . . . , 𝑀               (21) 

c) The center extension of the hidden layer is S, 

𝜕𝐸(𝑛)

𝜕𝑆𝑖(𝑛)
= −𝜔𝑖(𝑛)∑ 𝑒𝑘(𝑛)𝐺

′(‖𝑋𝑘 − 𝑡𝑖‖𝐶𝑖)
𝑁
𝑗=1 𝑄𝑘𝑖(𝑛)             (22) 

𝑄𝑘𝑖(𝑛) = (𝑋𝑘 − 𝑡𝑖(𝑛))(𝑋𝑘 − 𝑡𝑖(𝑛))
𝑇
                  (23) 

𝑆𝑖(𝑛 + 1) = 𝑆𝑖(𝑛) − 𝜂3
𝜕𝐸(𝑛)

𝜕𝑆𝑖(𝑛)
, 𝑖 = 1,2, . . , 𝑀               (24) 

In addition, the learning rate 𝜂1 , 𝜂2 , 𝜂3  should take different values. 

The Relief algorithm belongs to the Filter-style feature selection algorithm. The 

extracted features are selected without building a classifier. The basic principle 

of feature selection is to retain or remove features according to the feature's 

ability to distinguish samples. Relief algorithm has low complexity and high 

efficiency, so it is widely used in feature selection and data classification, but it 

is limited to the feature selection and classification problems of two types of 

data (Sun et al., 2018). Relief-F solves the limitation of Relief on the number of 

action categories, changing the number of neighbor selections for sample R to 

K neighboring samples, and then repeatedly updating the feature weights, thus 

playing a huge role in the feature selection of multi-type label data. Aiming at 

this limitation, this paper improves the Relief-F feature selection algorithm. This 

paper calculates the correlation matrix of the selected features, and sets a 

threshold for the features with higher cross-correlation to remove them, so as 

to remove the redundancy between the selected features of the algorithm, and 

further achieve the optimization of the features. Its realization block diagram is 

shown as in Figure 2. 

 

Figure 2: Relief-F improved feature selection 
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According to Figure 2, the Relief-F algorithm determines the weight of 

the feature by calculating the strength of the feature's ability to distinguish 

movements, and sets the threshold for output. The specific algorithm is 

described as follows:  

(1) We assume that the training data set is D, the number of sample 

sampling rates is m, the number of neighboring samples is k, and the threshold 

is 𝛿.We randomly select a sample R and look for K neighboring samples, and 

calculate the feature difference on a certain feature. The calculation formula is 

as follows. 

𝑑𝑖𝑓𝑓(𝐹, 𝑅1, 𝑅2) =
|𝑣𝑎𝑙𝑢𝑒(𝐹,𝑅1)−𝑣𝑎𝑙𝑢𝑒(𝐹,𝑅2)|

𝑚𝑎𝑥(𝐹)−𝑚𝑖𝑛(𝐹)
                 (25) 

𝑑𝑖𝑓𝑓(𝐹, 𝑅1, 𝑅2) = {
0; 𝑣𝑎𝑙𝑢𝑒(𝐹, 𝑅1) = 𝑣𝑎𝑙𝑢𝑒(𝐹, 𝑅2)

1; 𝑜𝑡ℎ𝑒𝑟
          (26) 

When the sample set is a numerical variable, formula (25) is used to 

calculate the characteristic difference, and when it is a nominal variable, 

formula (26) is used to calculate the characteristic difference.  

(2) The probability of the class distribution is shown below, and P(c) 

represents the probability of the c-th target. 

𝑝 =
𝑝(𝑐)

1−𝑝(𝑐𝑙𝑎𝑠𝑠(𝑅))
                            (27) 

(3) The weights of all features are updated cyclically, and the specific 

calculation formula is as follows. 

𝑊[𝐹] = −
(∑ 𝑑𝑖𝑓𝑓(𝐹,𝑅,𝐻𝑖)

𝑘
𝑖=1 )

𝑘𝑚
+
∑ [𝑝×(∑ 𝑑𝑖𝑓𝑓(𝐹,𝑅,𝑀𝑗(𝑐))

𝑘
𝑖=1 )]𝑐≠𝑐𝑙𝑎𝑠𝑠(𝑅)

𝑘𝑚
       (28) 

In the above formula, 𝑐𝑙𝑎𝑠𝑠(𝑅)  represents the category of R, 

𝑑𝑖𝑓𝑓(𝐹, 𝑅, 𝐻𝑖) represents the difference value of samples of the same type, and 

𝑑𝑖𝑓𝑓(𝐹, 𝑅,𝑀𝑖(𝐶)) refers to the difference value of samples of different types. 

(4) For the number of sampling m, the feature weight 𝑊[𝐹] is finally 

obtained through continuous loop calculation and update, and then the weight 

is sorted, and the threshold or specific dimension is set to output the selected 

feature subset.  

(5) The features after the decision are calculated to remove the 

redundancy between similar features. If it is assumed that there are n output 

features of the judge, the correlation coefficient matrix between the n groups of 

features is calculated as A, and the Peel correlation coefficient between 

features X and Y is calculated as follows: 
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𝑟 =
1

𝑁−1
∑ (

𝑋𝑖−𝑋

𝜎𝑋
)𝑁

𝑖=1 (
𝑌𝑖−𝑌

𝜎𝑌
)                        (29) 

(6) According to the correlation coefficient calculation formula between 

features, the correlation coefficient matrix between all features is A. 

𝐴 = [

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟2𝑛
⋮ ⋮ ⋱ ⋮
𝑟𝑛1 𝑟𝑛2 ⋮ 𝑟𝑛𝑛

]                        (30) 

The specific algorithm flow chart is shown in Figure 3. 

 

Figure 3: Flow chart of Relief-F improved algorithm 

4. Refinement of Sports Teaching Movements through Deep Learning and 

Artificial Intelligence 

In this section, we detail the process of refining sports teaching 

movements using advanced deep learning techniques and artificial intelligence. 
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The initial step involves image preprocessing to mitigate blurriness, which is 

crucial for the subsequent extraction of robust feature points. To achieve this, a 

Gaussian function is applied to the image through a convolution operation, 

serving as the initial preprocessing step. Subsequently, we employ a pyramid 

image hierarchical structure, as depicted in Figure 4. The process begins with 

the first sampling at an interval of 0.5 pixels, effectively doubling the resolution 

of the original image to produce the first layer of the pyramid. This initial 

sampled image serves as the base for subsequent layers. Progressively, the 

sampling intervals are doubled—1, 2, and 4 pixels—to generate the subsequent 

layers of the pyramid structure. These sampled images collectively form the 

pyramid hierarchy, which is then subjected to Gaussian filtering. This results in 

a Gaussian pyramid image structure, where each layer is filtered using a 

Gaussian kernel function with varying filter factors. The filter factors for the 

Gaussian filter at each level of the pyramid are indicated on the left side of the 

figure. Specifically, the standard deviation ratio between two consecutive layers 

is set to 1.26, ensuring a consistent and smooth transition across the pyramid 

layers. 

 

Figure 4: Pyramid image 

In Figure 5, the first group of five-layer purple logo images on the right 

are Gaussian filtered images, and the second group of four-layer green logo 

images on the right are DOG images after Gaussian difference. The original 

image is convolved with a Gaussian function to generate a group of images. 

The right column in the figure shows the result of subtracting adjacent images 

in each group to generate a Gaussian difference image. 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 99 - ISSN: 1577-0354 

464 

 

Figure 5: Schematic diagram of Gaussian difference image 

The process of obtaining selected feature points commences with the 

extraction of extrema from the Difference of Gaussians (DOG) image. To 

identify these extreme points within the Gaussian difference image, each 

sample pixel is subjected to a comparison with its immediate neighbors, which 

consist of 8 pixels in the same image layer. Additionally, the pixel under 

consideration is compared with its 9 counterparts in the directly adjacent layers 

of the pyramidal image structure. This comprehensive comparison involves a 

total of 26 pixels, as illustrated in Figure 6. 

 

Figure 6: Schematic diagram of comparison of 26 neighborhoods 
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For the green image on the right side of Figure 7, three images are 

extracted in order to extract feature points according to the above method. 

Among the 4 images, the red star image is the intermediate image of 1, 2, 3 

and 2, 3, 4 images compared with 26 pixels around the top and bottom. 

Therefore, we extract feature points from these two images and record 

grayscale information and coordinate information. 

 

Figure 7: Schematic diagram of Gaussian difference 

In order to realize the scalability and versatility of the system, this system 

is based on the idea of modularization and encapsulates important functional 

modules into different classes. Based on the above research, the structure 

diagram of the entire physical education movement recognition system is as 

follows: 

 

Figure 8: The structure diagram of the precise calibration system of physical teaching 

movements 
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5. Performance Verification of the Precise Calibration System for Physical 

Teaching Movements 

This article combines artificial intelligence deep learning technology to 

construct a precise calibration system for sports teaching movements, and 

evaluates the effect of systematic teaching in combination with experimental 

teaching. Moreover, this paper verifies the precise calibration effect of physical 

teaching movements through experimental teaching methods, and obtains the 

results shown in Table 1 and Figure 9. 

Table 1: Statistical table of the precise calibration effect of physical teaching movements 

NO SPORTS 

MOVEMENT 

CALIBRATION 

NO SPORTS 

MOVEMENT 

CALIBRATION 

NO SPORTS 

MOVEMENT 

CALIBRATION 

1 92.48  11 90.38  21 94.78  

2 93.99  12 88.45  22 91.79  

3 90.86  13 90.35  23 89.81  

4 95.15  14 90.73  24 87.93  

5 90.54  15 93.33  25 93.30  

6 87.73  16 91.30  26 90.86  

7 95.72  17 93.26  27 93.09  

8 91.97  18 89.45  28 87.48  

9 90.56  19 90.15  29 92.54  

10 93.50  20 90.03  30 90.51  

 

Figure 9: Statistical table of the precise calibration effect of physical teaching movements 
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From the above experimental research, it can be seen that the precise 

calibration system of sports teaching movements based on artificial intelligence 

deep learning technology proposed in this paper has a good recognition effect 

of sports teaching movements. After that, the effect of this system on the 

improvement of physical teaching is studied, and the results obtained are 

shown in Table 2. 

Table 2: Evaluation of the improvement of teaching effect 

NO TEACHING EFFECT NO TEACHING EFFECT NO TEACHING EFFECT 

1 84.61 11 91.05 21 92.03 

2 88.80 12 83.49 22 89.69 

3 93.60 13 78.90 23 75.93 

4 96.53 14 78.12 24 88.62 

5 86.39 15 76.82 25 90.90 

6 85.83 16 79.17 26 79.65 

7 77.13 17 95.81 27 81.68 

8 83.61 18 77.46 28 91.47 

9 86.89 19 95.50 29 90.58 

10 86.57 20 89.03 30 79.30 

From the above research, it can be seen that the precise calibration 

system of physical education movements based on artificial intelligence deep 

learning technology constructed in this paper can effectively improve the effect 

of physical education. 

6. Conclusion 

The present study examines the prevalent methodologies for detecting 

sports targets, which include the optical flow method, inter-frame difference 

method, and background difference method. Detection methodologies 

employing optical flow leverage the temporal characteristics of sports objects 

within imagery, extracting targets by analyzing the displacement vector's optical 

flow field. While this approach yields targets enriched with sports-specific and 

structural information, its reliability and precision are often compromised by 

factors such as noise, multi-light sources, shadows, and occlusions. The 

computational intensity of this method is substantial, necessitating specialized 

hardware for real-time detection in practical scenarios, which can be a limiting 

factor. In this work, we have integrated artificial intelligence and deep learning 

technologies to develop a precision sports target detection system tailored for 

physical education applications. The system has been implemented in physical 

education practice, with the aim of enhancing teaching efficacy. The evaluation 

of the system through testing indicates that it substantially satisfies the practical 

requirements of physical education instruction. 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 99 - ISSN: 1577-0354 

468 

REFERENCES 

Abanazir, C. (2019). E-sport and the EU: the view from the English Bridge Union. 

The International Sports Law Journal, 18(3), 102-113.  

Ángel-López, ,. P., & de la Peńa, N. A. (2015). Kinematic hand analysis using 

motion capture technology. In VI Latin American Congress on 

Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 

October 2014 (pp. 257-260). Springer.  

Bao, H., Lu, Y., & Wang, Q. (2020). Single target tracking via correlation filter 

and context adaptively. Multimedia Tools and Applications, 79, 27465-

27482.  

Bhat, P. G., Subudhi, B. N., Veerakumar, T., Di Caterina, G., & Soraghan, ,. ,. 

(2021). Target tracking using a mean-shift occlusion aware particle filter. 

IEEE Sensors Journal, 21(8), 10112-10121.  

Ferguson, L. ,., Carlson, K. T., & Rogers, D. (2019). Moving towards 

reconciliation through sport: sharing our process of exploring team 

saskatchewan experiences at the North American Indigenous Games. 

Journal of Exercise, Movement, and Sport (SCAPPS refereed abstracts 

repository), 51(1).  

Gerke, A., Babiak, K., Dickson, G., & Desbordes, M. (2018). Developmental 

processes and motivations for linkages in cross-sectoral sport clusters. 

Sport Management Review, 21(2), 133-146.  

Ilies, D., Buhas, R., Ilies, M., Ilies, A., Gaceu, O., Pop, A., Marcu, F., Buhas, S., 

Gozner, M., & Baias, S. (2018). Sport activities and leisure in Nature 

2000 protected area–Red Valley, Romania. Journal of Environmental 

Protection and Ecology, 19(1), 367-372.  

Khan, M. A. (2017). Multiresolution coding of motion capture data for real-time 

multimedia applications. Multimedia Tools and Applications, 76, 16683-

16698.  

Kim, M.-K., Kim, T. Y., & Lyou, ,. (2015). Performance improvement of an AHRS 

for motion capture. Journal of Institute of Control, Robotics and Systems, 

21(12), 1167-1172.  

Kimasi, K., Shojaei, V., & Boroumand, M. R. (2019). Investigation of safety 

conditions at gymnasia in different organizations. Journal of Humanities 

Insights, 3(02), 70-74.  

Komisar, V., Novak, A., & Haycock, B. (2017). A novel method for synchronizing 

motion capture with other data sources for millisecond-level precision. 

Gait & Posture, 51, 125-131.  

Kondrukh, A. (2017). Practical shooting sport in Russian sport system: essential 

specifications and features. Theory and Practice of Physical Culture(5), 

27-27.  

Lee, Y., & Yoo, H. (2017). Low-cost 3D motion capture system using passive 

optical markers and monocular vision. Optik, 130, 1397-1407.  

Li, T., Sun, ,., & Wang, L. (2021). An intelligent optimization method of motion 

management system based on BP neural network. Neural Computing 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 99 - ISSN: 1577-0354 

469 

and Applications, 33, 707-722.  

Liu, L., & Hodgins, ,. (2018). Learning basketball dribbling skills using trajectory 

optimization and deep reinforcement learning. Acm transactions on 

graphics (tog), 37(4), 1-14.  

Liu, S., Wang, S., Liu, X., Lin, C.-T., & Lv, Z. (2020). Fuzzy detection aided real-

time and robust visual tracking under complex environments. IEEE 

Transactions on Fuzzy Systems, 29(1), 90-102.  

Pogrebnoy, A., & Komlev, I. (2018). Sport institutions reporting to Ministry of 

Sport of Russian Federation: intellectual property, invention activity, 

patenting and legal consulting service analysis. Theory and Practice of 

Physical Culture(2), 2-2.  

Puupponen, A., Wainio, T., Burger, B., & ,antunen, T. (2015). Head movements 

in Finnish Sign Language on the basis of Motion Capture data: A study 

of the form and function of nods, nodding, head thrusts, and head pulls. 

Sign Language & Linguistics, 18(1), 41-89.  

Reinhart, K., & Wichmann, B. (2020). The TuS Fortschritt Magdeburg-Neustadt 

(soccer section) in the GDR–an example of amateur socialist sport. 

Soccer & Society, 21(4), 408-420.  

Sá, F., Marques, A., Rocha, N. B., Trigueiro, M. ,., Campos, C., & Schröder, ,. 

(2015). Kinematic parameters of throwing performance in patients with 

schizophrenia using a markerless motion capture system. 

Somatosensory & Motor Research, 32(2), 77-86.  

Sun, K., Li, X., & Shi, W. (2018). The Fusion of Adaptive Color Attributes for 

Robust Compressive Tracking. Wireless Personal Communications, 102, 

879-894.  

Wang, L., Lu, H., & Yang, M.-H. (2017). Constrained superpixel tracking. IEEE 

transactions on cybernetics, 48(3), 1030-1041.  

Zhang, ,., ,in, X., Sun, ,., Wang, ,., & Sangaiah, A. K. (2020). Spatial and 

semantic convolutional features for robust visual object tracking. 

Multimedia Tools and Applications, 79, 15095-15115.  

Zhi-Min, Z., & Zhong-Wen, C. (2015). A survey of motion capture data earning 

as high dimensional time series. International Journal of Multimedia and 

Ubiquitous Engineering, 10(9), 17-30.  

 


