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ABSTRACT 

In order to improve the effect of sports prediction, this article applies deep 

learning to the automatic collection and processing of video surveillance data. 

The established light field multi-viewpoint real-time 3D surface reconstruction 

system mainly includes multi-camera joint calibration, multi-view image dense 

matching and depth generation. In order to improve the efficiency and accuracy 

of multi-view image matching, a four-direction semi-global matching cost 

accumulation method is proposed. After the dense matching of the multi-view 

images is completed, the global optimization method is used to optimize the 

initial depth map, remove noise and smooth the homogeneous area, and 

improve the quality of the depth map. The experimental research results show 

that the deep learning method proposed in this article has a very good 

application effect in the automatic collection and processing of video 

surveillance data in sports prediction.  

KEYWORDS: deep Learning; Video Surveillance Data; Automatic Collection; 

Sports 

1. INTRODUCTION 

With the rapid development of modern competitive sports, the 

requirements for the comprehensive ability of athletes to create excellent 

results in competitions are getting higher and higher. Among them, the 

psychological quality in the competition is an important component of this 



Rev.int.med.cienc.act.fís.deporte - vol. 25 - número 99 - ISSN: 1577-0354 

353 

comprehensive ability. From the analysis of the internal factors of the 

competition performance, the athlete's competition performance depends on 

the competition performance, and the competition performance depends on the 

physical fitness, technical tactics and psychological state. These states are the 

embodiment of physical fitness, technical and tactical ability and psychological 

quality acquired by athletes through genetics and learning (Aso et al., 2021). 

Sports practice has proved that in the competition, about 70% of athletes have 

unsatisfactory results due to insufficient psychological preparation, only 20% of 

athletes have unsatisfactory results due to insufficient training level and 

technical preparation, and 10% of other factors. This shows that the 

psychological quality of the competition process plays a decisive role in the 

achievement of athletes. In particular, for billiards that requires sophisticated 

techniques, complex tactics, and one-to-one direct confrontation, higher 

psychological quality is required (Azhand et al., 2021). In the competition, 

billiards players must have good psychological qualities to be able to play their 

technical level normally or abnormally. Moreover, every athlete has his own 

psychological characteristics, and these psychological characteristics often 

determine his own playing style. The formation of excellent psychological 

qualities in competitions is accumulated in usual training and competitions. The 

game is ever-changing, and sometimes the outcome of the game often 

depends on the psychological quality. Moreover, psychological factors are often 

manifested in athletes' movements. Therefore, the recognition and analysis of 

the athletes' actions and the combination of the data collection system can 

collect the athletes' sports data and psychological data, which has a positive 

meaning for improving the athletes' competition performance and training 

effects (Bakshi et al., 2021). In order to improve the effect of deep sports 

prediction, this paper applies deep learning to the automatic collection and 

processing of video surveillance data to improve the processing effect of sports 

prediction data, thereby enhancing the effect of sports prediction. 

2. Related Work 

The functional movement test (FMS) and functional movement training 

originated from the Athletic Performance Institute in the United States. Its test 

purpose and function are to test and evaluate the human body’s ability to master 

and use basic body movements and movement structure, and to formulate and 

design corrective actions based on the test results The method of practice can 

effectively avoid sports injuries caused by wrong actions, improve the work 

efficiency of sports actions and the rationality of sports (Bhombe et al., 2021). 

Functional movement training contains 8 core contents, and "functional 

movement screening" is one of its core contents. Functional Movement Test 

(FMS) is proposed in the literature (Colyer et al., 2018) based on clinical 

experimental research and personal experience based on related functional 

sports. The results of functional action screening are used to evaluate the effect 

of the subjects in completing the actions, and to avoid the formation or 
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continuous deterioration of sports injuries to the greatest extent. The functional 

action screening test is composed of seven basic test actions and three 

additional injury inspection action tests. The scores are quantified and 

evaluated according to the completion of the screening actions of the subjects. 

Functional movement test is a technology for evaluating human functional 

movement. It is expected to discover the movement limitation and asymmetry 

of the subject's body through the completion of the screening movement by the 

subject (Díaz et al., 2021). This kind of evaluation technology can amplify the 

problem of physical compensation when the subject completes the action, and 

we can easily find the problem of the body. When the human body completes 

certain movements, the body's movement defects will lead to the occurrence of 

weak links in the sports system, and make the athletes inefficient to complete 

technical movements during competitions and training, and there is a 

corresponding risk of athletes' sports injuries (Ershadi-Nasab et al., 2018). FMS 

can be used as a test to check the athlete's body to determine the problems 

that may occur in the athlete's body during exercise, and that are difficult to find 

during traditional medical examinations. This test, which is developed based on 

the completion of the body's movement, can detect functional movement 

limitations and body asymmetry related to proprioception, balance and stability 

of the body. If these existing problems can be found using functional exercise 

screening, the athlete's body movement pattern can be changed early, thereby 

reducing the occurrence of athletes' sports injuries, and thereby improving the 

athlete's performance ability (Hua et al., 2020). Literature (Li et al., 2020) wants 

to confirm whether the functional action screening score is related to sports 

injury, so relevant researches have been carried out on athletes to record the 

functional action screening scores. And follow up the subjects' sports injuries 

throughout the season, and record the occurrence of serious sports injuries. 

They classify sports injuries that take more than 3 weeks of rest after injury to 

athletes as serious sports injuries. The results show that the results of the 

functional movement screening are related to the sports injuries of the subjects 

participating in the test. The results show that athletes with lower FMS scores 

are more likely to suffer sports injuries. The literature (Liu et al., 2021) carried 

out functional action screening, through the screening, the scores of the 

screening were recorded respectively to verify the relationship between the 

injury and the FMS score and to conduct research. The FMS score split point 

is set at 16 points. Literature (Liu et al., 2018) investigated and studied athletes. 

The subjects included football, volleyball and basketball. Before the start of the 

season, the subjects were screened for functional actions and the screening 

scores were recorded. Follow the sports team to observe the subjects' sports 

injuries throughout the season, and set the FMS score split point as 14 points. 

The above studies show that the validity of FMS is more controversial, and most 

studies prove that FMS can be used as a tool for predicting sports injuries. In 

the literature (McNally et al., 2018), in the research on functional action 

screening and evaluation, the FMS score segmentation point is set to 14 points. 
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The research results show that when the FMS screening result score is not 

higher than 14 points, the athletes’ chances of sports injury will be Increase 

from 15% to 50%. For those athletes whose FMS scores are less than 14 points, 

it is generally recommended that special training should not be continued, and 

rehabilitation training to strengthen motor functions should be put in the first 

place, which can relieve pain and relieve pain. It can reduce the chance of 

athletes getting injured. Literature (Mehta et al., 2017) conducted a survey and 

research on professional athletes. Through a one-year follow-up study, it is 

proved that athletes are 2.6 times more likely to be injured in hip flexion and 

extension imbalance than hip flexion and extension balance. Literature 

(Nagalakshmi Vallabhaneni, 2021) investigated and studied athletes. The 

subjects included football, volleyball and basketball. Before the start of the 

season, the subjects were screened for functional actions and the screening 

scores were recorded. Follow the sports team to observe the subjects’ sports 

injuries throughout the season. 

3. Real-time 3D surface reconstruction system of light field multi-view 

image based on deep learning 

In this paper, we combine deep learning to model the sports process. 

We perform algorithm improvement and spatial model construction. The 

established optical field multi-view real-time 3D surface reconstruction system 

mainly contains three parts: multi-camera joint calibration, multi-view image 

dense matching and depth generation, and 3D dense reconstruction 

visualization, and the implementation flow of the reconstruction system is 

shown in figure 1.  

 

Figure 1: Schematic diagram of the realization process of the real-time 3D surface 

reconstruction system for light field multi-view images 

Table 1 shows a partial comparison of the experimental results of the 

joint multi-camera calibration based on two different calibration methods, 

Zhengyou Zhang and VisualSFM, for the camera array shown in figure 2(b). 

The upper row of each parameter comparison is the parameter obtained by 

Zhengyou Zhang's calibration method, and the lower row is the parameter 

obtained by VisualSFM's self-calibration method. Comparing the results of the 

two multi-camera joint calibrations, we can see that (Nie et al., 2018): Although 
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the camera parameters obtained by the two calibration methods are 

approximately the same, the calibration accuracy of the joint multi-camera 

calibration method based on Zhang Zhengyou's plane calibration algorithm is 

higher, and can be seen from the inverse projection pixel error. The main reason 

is that Zhang Zhengyou's plane calibration algorithm makes the extraction of 

feature points more accurate by using a standard calibration template. This is 

also the main reason for adopting Zhang Zhengyou's plane calibration 

algorithm for the joint multi-camera calibration (Nie et al., 2019). 

Table 1: Comparison of multi-camera joint calibration results based on two different 

calibration methods 

 REFERENCE 

CAMERA 

(CAMERA 1) 

CAMERA 2 CAMERA 3 CAMERA 4 

INTERNAL 

PARAMETERS 

(FX, FY) 

(CX, CY) 

490.5290 

491.9580 

322.0730 

192.8820 

490.8030 

491.9950 

315.1140 

185.0950 

490.2090 

491.6790 

316.4410 

190.0050 

493.8750 

495.5150 

321.8430 

181.0310 

483.5020 

486.3280 

320 180 

484.1150 

484.2560 

320 180 

485.996 

486.005 

320 180 

490.269492.355 

320 180 

TRANSLATION 

VECTOR 

(TX, TY, TZ) 

000 -48.540-0.069 

3.933 

-96.825 -3.737-

1.991 

-143.583-3.300 

17.901 

000 -50.387 -0.102 

3.865 

-94.031 -3.882-

2.387 

-146.290 -3.103 

16.565 

BACK 

PROJECTION 

ERROR 

0.1260 0.1350 0.1200 0.1050 0.1230 0.1320 0.1280 0.1020 

0.3990 0.3640 0.4930 0.3200 0.3840 0.3660 0.5010 0.3400 

The three-dimensional space of the target scene is swept by a virtual 

plane, and the movement direction of the plane is along the Z axis of the scene 

and parallel to the reference viewpoint, as shown in figure 2. 

 

Figure 2: Schematic diagram of plane scanning algorithm for dense matching of multi-view 

images 
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In the case of constant illumination luminance. If the plane of a certain 

depth d happens to lie on the surface of the reconstructed object, the pixel x in 

the reference viewpoint image and the corresponding single-response mapped 

pixel x' in the sensed viewpoint image will match at this time. Therefore, the 

matching cost of the corresponding pixel between the reference viewpoint 

image and the sensed viewpoint image can be calculated to determine the 

depth value of each pixel in the reference viewpoint image. When the plane is 

scanned traversing the three-dimensional space, all pixels on the reference 

viewpoint image are matched and the depth values of all pixels on the reference 

viewpoint image can be obtained (Petrov et al., 2018). Without loss of generality, 

we assume that the camera internal parameter matrix corresponding to the 

reference viewpoint image is K1, and the external parameter matrix is 𝐶1 =

[𝑅1|𝑡1] . The camera internal parameter matrix corresponding to the sensing 

viewpoint image is 𝐾𝑖, where 𝑖 = 2,⋯6 and the external parameter matrix is 

𝐶1 = [𝑅1|𝑡1] . 𝑛 = (0,0,1)
𝑇  is the unit vector along the Z axis, and d is the 

distance (depth) relative to the reference view point image plane. From the 

discussed homography transformation method for a given plane, the 

homography matrix induced by plane 𝜋(𝑑) = (𝑛𝑇 , 𝑑)𝑇  can be deduced as 

(Sárándi et al., 2020): 

𝐻𝑑 = 𝐾𝑖(𝑅𝑟𝑒𝑙 − 𝑡𝑟𝑒𝑙𝑛
𝑇/𝑑)𝐾1

−1                                              (1) 

Each sensor view point image is mapped onto the plane 𝜋(𝑑) according 

to the homography matrix 𝐻𝑑 for dense matching with the reference view point 

image. Figure 3 shows a schematic diagram of the non-parametric local 

transformation method of a 5x5 pixel block. The source Census transform 

needs to perform 24-pixel intensity value comparisons (figure 4(a) all pixels in 

the blue pixel block are compared with the center pixel in turn). However, the 

generalized Census transform only needs to be performed 4 times (comparison 

between the pixels where the arrow and the tail of the arrow are located in the 

figure) to achieve the same or even better results. The detailed description and 

performance comparison of the generalized Census transform algorithm can 

be found in the literature. 

 

Figure 3: Non-parametric local transformation method in matching similarity calculation 
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The generalized Census transform of point x on the reference viewpoint 

image can be expressed as: 

𝐶(𝑥) = ⊗
1≤𝑗≤𝑛

𝜉(𝑥 + 𝑐𝑗 , 𝑥 + 𝑐𝑗
′)                                                   (2) 

The (𝑐1, 𝑐2, . . . , 𝑐𝑛)  and (𝑐1
′ , 𝑐2

′ , . . . , 𝑐𝑛
′ )  in the formula represent the 

defined coordinate sequence, usually n≥1. After the reference viewpoint image 

to be matched is subjected to the generalized Census transformation, the 

matching cost 𝑐𝑜𝑠 𝑡𝑖 (𝑥, 𝑑)  is obtained by calculating the Hamming distance 

between the reference viewpoint image and the pixels in each sensing 

viewpoint image, which is expressed as (Thành & Công, 2019): 

𝑐𝑜𝑠 𝑡𝑖 (𝑥, 𝑑) = 𝐻𝑎𝑚𝑚𝑖𝑛 𝑔 (𝐶1(𝑥), 𝐶𝑖(𝐻𝑖
𝑑𝑥))             (3) 

Formula (2) is only the matching cost between two viewpoint images. 

When occlusion occurs, the pixel area that is occluded is not a common area 

in the dual-view image, and the matching cost at this time will be meaningless. 

Multi-view image matching can solve the problem of occlusion in dual-view 

image matching. The cost of multi-view image matching is expressed as: 

𝑐𝑜𝑠 𝑡 (𝑥, 𝑑) =
1

|𝑁|
∑ |𝑐𝑜𝑠 𝑡𝑖 (𝑥, 𝑑)|𝑖∈𝑁                                           (4) 

It is the average value of the matching cost of multiple dual-viewpoint 

images, which can solve the problem of inaccurate matching when occlusion 

occurs. In the formula, N = 2,...,.6 is the set of sensor-viewpoint images. The 

cumulative path of the four-direction semi-global matching cost accumulation is 

up, down, left, and right. We assume that Cost, (x, d) represents the 

accumulation of matching costs along the path in the r direction, and r 

represents one of the up, down, left, and right directions. Therefore, for a certain 

pixel x, its initial multi-view image matching cost is known as Cost (x, d) in 

formula (4), and its cumulative cost 𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑)  on the path r can be 

recursively written as: 

𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑) = 𝐶𝑜𝑠𝑡(𝑥, 𝑑) +  𝑚𝑖𝑛(𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑑 − 1) + 𝑃1
𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑑), 𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑑 + 1) + 𝑃1),𝑚𝑖𝑛 𝐶 𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑖) + 𝑃2)  

(5) 

In the formula, 𝑥 = (𝑢, 𝑣)𝑇 is the image pixel coordinates, and P1 is the 

small value penalty term, which penalizes the neighborhood pixels with small 

depth changes when the depth is not continuous (Xu & Tasaka, 2020). Since 

the cumulative cost 𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑) in formula (5) increases with the addition of 

the minimum cumulative cost of the remaining pixels on the path, it is likely to 

be recursively accumulated to a huge value during the calculation process, 

leading to overflow. Therefore, in order to avoid overflow of the accumulated 
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cost value 𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑)  during the execution of the algorithm, the minimum 

path cost of the pixel x-r is subtracted from the right side of formula (5). The 

revised cumulative cost 𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑) is expressed as: 

𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑) = 𝐶𝑜𝑠𝑡(𝑥, 𝑑) +  𝑚𝑖𝑛(𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑑 − 1) + 𝑃1
𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑑), 𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑑 + 1) + 𝑃1),

𝑚𝑖𝑛
𝑟
𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑖) + 𝑃2) − 𝑚𝑖𝑛

𝑟
𝐶𝑂𝑆𝑇𝑟(𝑥 − 𝑟, 𝑘)

        (6) 

The cumulative cost value on the modified path r will not exceed 

𝐶𝑜𝑠𝑡(𝑥, 𝑑) + 𝑃2, thus ensuring the smooth execution of the algorithm. In order 

to further improve the accuracy of matching, sub-pixel interpolation is 

performed in the multi-view image matching cost accumulation algorithm. The 

specific method is to insert sub-pixels in adjacent pixels in the same row or the 

same column, and the cost of performing sub-pixel matching is accumulated as: 

𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑) = 𝐶𝑜𝑠𝑡(𝑥, 𝑑) +  𝑚𝑖𝑛(𝐶𝑂𝑆𝑇𝑟(𝑥𝑠𝑤 − 𝑟, 𝑑 − 1) + 𝑃1
𝐶𝑂𝑆𝑇𝑟(𝑥𝑠𝑤 − 𝑟, 𝑑), 𝐶𝑂𝑆𝑇𝑟(𝑥𝑠𝑤 − 𝑟, 𝑑 + 1) + 𝑃1),

𝑚𝑖𝑛
𝑟
𝐶𝑂𝑆𝑇𝑟(𝑥𝑠𝑤 − 𝑟, 𝑖) + 𝑃2) − 𝑚𝑖𝑛

𝑟
𝐶𝑂𝑆𝑇𝑟(𝑥𝑠𝑤 − 𝑟, 𝑘)

           (7) 

In the formula, 𝑥𝑠𝑤 is the coordinate value of the sub-pixel in the defined 

sub-window, and the value of 𝑥𝑠𝑤 in the experiment is four values of x-0.5, x+0, 

x+0.5 and x+1. Finally, the four-direction sub-pixel semi-global matching cost of 

pixel x is accumulated as: 

𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑑) = ∑ 𝐶𝑂𝑆𝑇𝑟(𝑥, 𝑑)𝑟                   (8) 

We summarize the execution steps of the above four-directional semi-

global matching cost accumulation algorithm as follows: The algorithm performs 

a sub-pixel matching cost accumulation for all pixels in the image starting from 

the first pixel row (𝑢𝑖 , 0) or the first pixel (0, 𝑣𝑗) column of the reference image 

toward the last row (N-1,0) or the last column (O, M-1). After that, the algorithm 

is repeated once in reverse (M and N are the length and width values of the 

reference image, respectively). Therefore, for a certain pixel to be matched, a 

total of four directions of matching cost accumulation are performed: up, down, 

left and right, as shown in figure 4.  The core execution code of the algorithm 

in the CUDA (Compute Unified Device Architecture) parallel computing platform 

is shown in the Appendix (Zarkeshev & Csiszár, 2019).The initial depth value d 

obtained by WTA method 𝑎𝑟𝑔𝑚𝑖𝑛𝑑 𝐶 𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑑) is often noisy and uncertain. 

In order to calculate a more accurate reference view depth map, we use a global 

method to iteratively optimize the depth generation process to remove outliers. 

The global energy function can be expressed as: 

𝐸𝑑 = ∫ {𝑔(𝑥‖𝛻𝑑‖𝜀) + 𝜆𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑑)}𝛺
𝑑𝑥                                    (9) 
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Figure 4: Sub-pixel semi-global matching cost accumulation in four directions 

The data item 𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑑)  in the formula is the minimum four-

direction matching cost accumulation selected by WTA. It can effectively 

remove noise and ensure the accuracy of the depth after denoising. The Huber 

norm ‖𝛻𝑑‖𝜀 of the depth value gradient is used as a regular term to ensure 

the discontinuity of the edge while achieving a smooth and uniform area. The 

Huber norm is chosen because it is composed of two convex functions and has 

the characteristics of continuous differentiability of the quadratic norm and the 

robustness of the L1 norm to outliers. Since the depth discontinuity usually 

occurs at the edge position of the content of the reference viewpoint image, the 

weight of the regular term can be calculated from the gradient magnitude of the 

reference viewpoint image. The calculation formula is: 

𝑔(𝑥) = 𝑒𝑥𝑝(−𝛼‖𝛻𝐼(𝑥)‖2)                                                (10) 

This reduces the intensity of regularization when the edge gradient is 

high, and ensures that the global optimization process respects the edge. 

Formula (10) can be solved using the original dual algorithm, and the parallel 

calculation of this algorithm can ensure the real-time performance of depth 

generation. The detailed description of the original dual algorithm and its 

parallel calculation can be referred to. When solving formula (9), in order to 

make the regular term and data item in the equation continuous and 

differentiable, an auxiliary variable v is introduced to transform the equation into: 

𝐸𝑣 = ∫ {𝑔(𝑥‖𝛻𝑑‖𝜀) +
1

2𝜃
(𝑑 − 𝑣)2 + 𝜆𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑑)}𝛺

𝑑𝑥                    (11) 

The 𝜃 in the formula is a very small constant. Define 𝑄 =
1

2𝜃
(𝑢 − 𝑣)2, 

which couples the original variable and the auxiliary variable together, and when 
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𝜃 → 0, d=v, making the energy function formula (11) and the original energy 

function formula (9) equivalent. 

‖𝐴𝐺𝑑‖𝜀 = 𝑚𝑎𝑥
�⃗�:|�⃗�|1≤1

{⟨𝐴𝐺𝑑, �⃗�⟩ − 𝛿�⃗�(�⃗�) −
𝜀

2
‖�⃗�‖2

2}                              (12) 

when |�⃗�|1 ≤ 1. A denotes the gradient operator 𝛻, so that Ad computes 

a 2MN × 1 gradient vector. g=diag(g) is the element-by-element weighting 

matrix. The original dual form of the energy function is obtained by bringing 

formula (12) into formula (11) as follows: 

𝐸(𝑑, 𝑣, �⃗�) = {⟨𝐴𝐺𝑑, �⃗�⟩ +
1

2𝜃
‖𝑑 − 𝑣‖2

2 + 𝜆𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑣) − 𝛿�⃗�(�⃗�) −
𝜀

2
‖�⃗�‖2

2}   (13) 

Thus, depth generation (solving for the depth value d) eventually 

translates into minimizing the energy function 𝐸(𝑑, 𝑣, �⃗�). In solving for formula 

(13), the partial derivative of the original variable d is first performed for a fixed 

auxiliary variable v to obtain the condition that the stationary point d is satisfied 

when 𝐸(𝑑, 𝑣, �⃗�) is minimized: 

𝜕𝐸

𝜕𝑑
= 𝐺𝐴𝑇�⃗� +

1

𝜃
(𝑑 ⋅ 𝑣) = 0                                              (14) 

Then, to find the partial derivative of the dual variable �⃗�, there are: 

𝜕𝐸

𝜕�⃗�
= 𝐴𝐺𝑑 − 𝜀�⃗� = 0                                                      (15) 

In the iterative process, perform the gradient descent of d and the 

gradient of p to obtain the updated equations of the original variable d and the 

dual variable �⃗�: 

{
�⃗�𝑛+1 = ∏ ((�⃗� + 𝜏�⃗�𝐴𝐺𝑑

𝑛)/(1 + 𝜏�⃗�𝜀)) (𝑎)�⃗�

𝑑𝑛+1 =
𝑑𝑛+𝜏𝑑(𝐺𝐴

𝑇�⃗�𝑛+1+𝑣𝑛/𝜃𝑛)

1+𝜏𝑑/𝜃
𝑛 (𝑏)

                          (16) 

In the formula, ∏ (. . . )�⃗�   satisfies ∏ (𝑞)�⃗� = 𝑞/𝑚𝑎𝑥(1, ‖𝑞‖2, ) , denoting 

the projection of the gradient ascent step onto the unit ball. 𝜃𝑛 satisfies 𝜃𝑛+1 =
𝜃𝑛(1 − 0.00ℎ), 𝜏𝑝 and 𝜏𝑑 are the step lengths for the iterative update of the 

dyadic variable �⃗�  and the original variable d, respectively. Next, the 

corresponding auxiliary variables 𝑣𝑥(𝑣𝑥 = 𝑣(𝑥) ∈ 𝐷) are found by a point-by-

point search in each iteration for the primal variables d already found, such that 

the remaining part of the energy function is: 

𝐸′(𝑥,𝑑𝑥,𝑣𝑥) =
1

2𝜃
(𝑑𝑥 − 𝑣𝑥)

2 + 𝜆𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑣𝑥)                             (17) 
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The global optimization process of the entire depth generation can be 

expressed as:  

1. The algorithm is initialized and iterated, and the number of iterations 

is n=0. We set the dual variable �⃗� = 0, and initialize the original variable as: 

𝑑𝑥
0 = 𝑣𝑥

0 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑣𝑥∈𝐷

𝐶𝑂𝑆𝑇𝑎𝑔𝑔(𝑥, 𝑣𝑥) 

The algorithm starts to iterate: 

2. The algorithm updates �⃗�  according to the dual variable iteration 

formula (16a). 

3. The algorithm updates d according to the original variable iteration 

formula (16b). 

4. The algorithm uses the obtained d to calculate the auxiliary variable E 

through point-by-point search. 

5. When 𝜃 is less than the given threshold, the algorithm iteration ends 

and the target depth d is output. 

The core execution code of the iterative update process of the original 

variable d and the pairwise variable �⃗� in CUDA parallel computing is shown in 

the Appendix. After the depth map of the reference viewpoint image is obtained, 

the three-dimensional points in space corresponding to the two-dimensional 

image points in the depth map can be calculated through projection mapping. 

After that, the three-dimensional points in the space are triangulated to 

generate a three-dimensional patch of the scene, and texture mapping is 

performed on the three-dimensional patch to obtain the final three-dimensional 

surface model of the scene, so as to realize the visualization of the 

reconstruction result. If it is assumed that the two-dimensional image point 

coordinates in the depth map are (x, y), the corresponding spatial three-

dimensional point coordinates are (X, Y, Z). According to the camera's imaging 

model, the projection mapping process can be expressed as: 

{
𝑥 = 𝑓𝑧 (

𝑋

𝑍
) + 𝑐𝑥

𝑦 = 𝑓𝑧 (
𝑌

𝑍
) + 𝑐𝑦

                            (18) 

The relationship between the normalized depth value d and the three-

dimensional coordinate Z of the space point can be expressed as: 

𝑍 =
1

1/𝑓𝑎𝑟+𝑑⋅𝑠𝑡𝑒𝑝
                             (19) 

The step length step is obtained by step=(l/near-1/far)/LayerNum. 

Among them, far and near are the farthest plane value and the nearest plane 

value defined in the plane scan. They are set according to the real depth range 
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of the scene, in millimeters, and LayerNum is the number of plane scan layers. 

Combining formula (18) with the normalized depth value d of each pixel in the 

depth map, the coordinates (X, Y, Z) of all three-dimensional points in space 

can be calculated as: 

{
 
 

 
 𝑍 =

1

1/𝑓𝑎𝑟+𝑑⋅𝑠𝑡𝑒𝑝

𝑋 =
(𝑥−𝑐𝑥)⋅𝑍

𝑓𝑥
=

𝑥−𝑐𝑥

𝑓𝑥⋅(1/𝑓𝑎𝑟+𝑑⋅𝑠𝑡𝑒𝑝)

𝑌 =
(𝑦−𝑐𝑦)⋅𝑍

𝑓𝑦
=

𝑦−𝑐𝑦

𝑓𝑦⋅(1/𝑓𝑎𝑟+𝑑⋅𝑠𝑡𝑒𝑝)

                     (20) 

Then, the three-dimensional point cloud of the scene is triangulated to 

obtain a three-dimensional patch. In order to reduce the complexity of the 

triangulation calculation and avoid confusion when selecting a triangular point 

cloud, the principle of the triangulation process is to triangulate each point in 

the depth map and the three-dimensional points corresponding to the points 

below and to the right, as shown in figure 5. 

 

Figure 5: Triangulation of reconstructed 3D point cloud 

Finally, the color value of each pixel in the reference viewpoint image is 

assigned as a texture to the corresponding three-dimensional point in space. 

Thus, the visualization of the texture of the three-dimensional surface model of 

the scene is realized. 

4. Sports prediction system based on deep learning for automatic 

collection and processing of video surveillance data 

This system is mainly composed of three parts: data acquisition terminal, 

server, and data display terminal. The system architecture is shown in Figure 1. 

The first part: The data collection terminal is composed of IM (Intelligent Monitor) 

and a camera. The IM is worn on the athlete and collects all-round monitoring 
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data of the athlete's health, environment, sports data and sprint prediction, and 

transmits it to the server. The camera sends the live signal to the server. The 

second part: The server stores the data information and live video data 

collected by IM, and sends them to the display terminal as a transfer station 

between the data collection terminal and the data display terminal. The third 

part: The data display terminal displays the data transmitted from the server in 

the form of webpages and APPs on large screens, mobile phones, tablets and 

other multimedia devices, so as to facilitate more spectators to visually watch 

the game and judge the results, and to have a more thorough grasp of the game 

status of each player. 

 

Figure 6: Block diagram of the competition system 

This system selects the relational database SQLite3 as the data storage 

medium, which contains a total of racing athlete table, user table, competition 

table, and interactive platform table. The relationship between the fields and 

tables of each table is shown in Figure 7. 

 

Figure 7: Database relationship diagram 
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On the basis of the above research, an athlete's human body model is 

constructed through the model in this article, and the simulation grid model is 

shown in Figure 8. 

 

Figure 8: Athlete's human body simulation grid model 

The sports data processing and monitoring simulation are carried out 

through the system in this paper, and the results are shown in Figure 9. 

 

(a) Original picture 

 

(B) The processed picture 

Figure 9: Automatic collection and processing of video surveillance data based on deep 

learning 
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It can be seen from the above research that the method of automatic 

collection and processing of video surveillance data based on deep learning 

proposed in this paper has certain effects. After that, we will conduct further 

research on the system of this paper to explore the prediction effect of the 

system constructed in this paper. The statistical prediction results must be 

shown in Table 2 and Figure 10. 

Table 2: Application effects of deep learning methods in the automatic collection and 

processing of video surveillance data in sports prediction 

NO FORECAST EFFECT NO FORECAST EFFECT NO FORECAST EFFECT 

1 72.9431 22 77.6500 43 70.7391 

2 87.7056 23 71.9429 44 75.5258 

3 73.9233 24 79.6336 45 80.6946 

4 77.5033 25 72.5636 46 79.8900 

5 87.6829 26 88.8124 47 73.7629 

6 78.4817 27 82.4861 48 73.8084 

7 72.3358 28 81.9564 49 75.2886 

8 78.5469 29 77.9709 50 83.2700 

9 85.4432 30 79.5228 51 74.9322 

10 76.5565 31 82.5291 52 74.7968 

11 70.8665 32 73.6660 53 76.5001 

12 71.3276 33 84.7510 54 81.1996 

13 84.1116 34 90.7040 55 70.6313 

14 73.3936 35 83.1911 56 81.7481 

15 83.5362 36 87.1446 57 73.2668 

16 76.0527 37 72.6796 58 83.6407 

17 83.6818 38 71.0209 59 73.5269 

18 80.3212 39 86.9717 60 72.1685 

19 71.7531 40 73.3500 61 80.3252 

20 81.7140 41 79.5569 62 82.8896 

21 70.6680 42 72.0182 63 78.0173 

 

Figure 10: Simulation results of system prediction simulation 
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From the above simulation results, the deep learning method proposed 

in this article has a very good application effect in the automatic collection and 

processing of video surveillance data in sports prediction. 

5. Conclusion 

Sports competition data analysis refers to the analysis of various 

information displayed by the athletes, such as the skills of the athletes, based 

on the behavior of the athletes on the competition field. In addition to analyzing 

the data of the two teams and each player, it is also necessary to analyze the 

comparison between the players and the teams. A lot of information can be 

obtained in the preparation stage before the sports competition. The information 

that people can learn includes the previous competition results of both sides of 

the competition, the advantages of each athlete, and the sports skills that they 

have mastered, and so on.  

After that, based on the recent performance of the two teams, it is 

predicted that the game will happen, especially the result of the game. In order 

to improve the effect of deep sports prediction, this paper applies deep learning 

to the automatic collection and processing of video surveillance data to improve 

the processing effect of sports prediction data, thereby enhancing the effect of 

sports prediction. The experimental research results show that the deep 

learning method proposed in this article has a very good application effect in 

the automatic collection and processing of video surveillance data in sports 

prediction 
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