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ABSTRACT 

Background: Diabetes is a major metabolic disorder that not only affects 

overall health but also significantly influences physical activity levels, athletic 

performance, and exercise recovery. Early and accurate detection of diabetes 

is crucial for preventing complications, optimizing metabolic function, and 

enhancing participation in physical activity and sports. This study explores the 

impact of dietary habits and stress factors on diabetes risk using interpretable 

machine learning models, with a focus on their implications for sports science, 

rehabilitation, and metabolic health management. Methods: Machine learning 

models were developed using dietary intake data combined with positive and 

negative stress indicators to enhance predictive accuracy for diabetes detection. 

Comparative analyses were conducted to evaluate the relative impact of diet 

and stress on diabetes risk, with an emphasis on metabolic efficiency, energy 

regulation, and physical endurance. Random Forest and other interpretable 

machine learning approaches were applied to ensure transparency in the 

prediction process, enabling clinicians, sports scientists, and health 

practitioners to derive actionable insights from the results. Results: The 

inclusion of stress-related features significantly improved model accuracy and 

generalizability, highlighting the interplay between psychological stress, 

metabolic function, and physical performance. Contrary to traditional 
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assumptions, positive stress exhibited a stronger influence on diabetes risk 

than negative stress, suggesting that psychological resilience and adaptive 

stress responses play a crucial role in metabolic adaptation and physical health. 

Additionally, dietary factors, particularly carbohydrate intake, emerged as the 

most critical determinant of diabetes risk, reinforcing the importance of 

nutritional regulation in sports performance and metabolic optimization. The 

proposed machine learning model achieved an accuracy exceeding 99%, 

demonstrating its potential as a reliable tool for early diabetes detection, 

personalized intervention, and sports health management. Conclusions: This 

study provides valuable insights into the role of diet and stress in diabetes risk 

and their implications for physical activity, sports participation, and athletic 

performance. The findings highlight the need for integrated lifestyle 

interventions that combine nutritional optimization, stress management, and 

structured exercise programs to enhance metabolic resilience and athletic 

endurance. By leveraging interpretable machine learning, healthcare 

professionals and sports scientists can develop personalized strategies for 

diabetes prevention, physical conditioning, and performance enhancement. 

Future research should explore the long-term impact of diet-stress interactions 

on sports performance and recovery in diabetic and prediabetic populations. 

KEYWORDS: Diabetes Detection; Interpretable Machine Learning; Dietary 

Structure; Life Stress 

1. INTRODUCTION 

Diabetes mellitus (DM) is a global metabolic disorder that significantly 

impacts physical activity, exercise performance, and overall health. 

Characterized by insulin resistance, impaired glucose metabolism, and chronic 

hyperglycemia, diabetes is associated with severe complications such as 

cardiovascular disease, neuropathy, and musculoskeletal dysfunction. Beyond 

its clinical implications, diabetes affects an individual's ability to engage in 

regular physical activity, reducing exercise tolerance, aerobic capacity, and 

muscle recovery (Rajkomar et al., 2019; Ribeiro et al., 2016). These limitations 

pose a challenge not only for general populations but also for athletes and 

physically active individuals who rely on optimal metabolic function for 

endurance, strength, and performance. As lifestyle factors play a pivotal role in 

diabetes prevention and management, investigating the influence of diet and 

stress on diabetes risk is crucial for optimizing long-term health outcomes, 

particularly in the context of sports medicine and rehabilitation (Fang et al., 

2023). Diet and stress are two critical lifestyle factors influencing metabolic 

health, energy production, and recovery from physical exertion. Diet, 

particularly macronutrient composition, directly impacts glucose metabolism 

and insulin sensitivity. Excessive carbohydrate consumption can lead to 

postprandial hyperglycemia and insulin resistance, whereas protein and fat 

intake play essential roles in energy expenditure and muscle synthesis. Proper 
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glucose regulation is vital for endurance athletes, fitness enthusiasts, and 

individuals undergoing rehabilitation, making early detection of diabetes risk 

imperative for maintaining peak physical performance. Additionally, stress 

affects metabolic function in complex ways, with both positive and negative 

stress responses influencing glucose regulation. While positive stress 

(eustress), often experienced during training and competition, may enhance 

metabolic adaptation and insulin sensitivity, chronic negative stress (distress) 

can lead to excessive cortisol secretion, promoting insulin resistance and fat 

accumulation (Obermeyer & Emanuel, 2016; Organization, 2016). 

Understanding the bidirectional relationship between stress and metabolic 

health is essential for optimizing physical conditioning, recovery, and disease 

prevention. Advancements in machine learning provide a novel approach to 

identifying and analyzing diabetes risk factors by detecting complex interactions 

between diet, stress, and glucose metabolism. Unlike traditional statistical 

models, interpretable machine learning algorithms, such as Random Forest, 

allow for precise predictions while maintaining transparency in the decision-

making process. These models offer valuable insights into how dietary intake 

and stress-related factors influence metabolic function, enabling healthcare 

professionals, sports scientists, and fitness experts to develop personalized 

interventions for diabetes prevention and physical performance optimization. 

By integrating dietary data and stress indicators into predictive models, this 

study aims to enhance the accuracy of diabetes detection while examining the 

relative impact of these factors on metabolic health (American Diabetes 

Association, 2014a; Chrousos, 2009). The primary objectives of this study are 

to assess the relationship between diet, stress, and diabetes risk using machine 

learning, examine the influence of carbohydrate consumption and stress 

variations on metabolic function, and evaluate how diabetes-related 

impairments affect exercise capacity and sports participation. Additionally, this 

study seeks to develop a predictive framework for early diabetes detection, 

offering practical applications for sports medicine, rehabilitation, and metabolic 

health management. The findings will be valuable for athletes, coaches, and 

healthcare professionals in designing personalized nutrition and training 

programs that enhance metabolic resilience and prevent diabetes-related 

physical impairments (Federation, 2019; Leo et al., 2023). This research is 

directly relevant to sports science and physical activity medicine, as it provides 

a deeper understanding of how diet and stress interact with metabolic health 

and exercise performance. By leveraging machine learning to identify diabetes 

risk factors (Hu, 2011; LeCun et al., 2015), this study contributes to the 

development of precision-based interventions that integrate nutrition, stress 

management, and structured exercise programs. Ultimately, bridging the gap 

between diabetes risk assessment and exercise-based interventions will 

support improved physical function, athletic performance, and long-term health 

outcomes for both athletes and individuals at risk of metabolic disorders. This 

study aims to fill these gaps by focusing on the interpretability of machine 
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learning models in diabetes detection. We integrate dietary and stress-related 

data to develop a comprehensive predictive model that addresses the 

shortcomings of current research. Additionally, we conduct a thorough analysis 

of feature importance and correlations to identify the most influential factors 

contributing to diabetes risk. By doing so, we aim to provide a more transparent 

and clinically applicable approach to diabetes detection, offering healthcare 

professionals actionable insights that can inform both preventive and 

therapeutic strategies.  The main contributions of this paper are as follows: 

➢ We present a novel machine learning model that integrates both dietary 

and stress-related features to enhance the prediction accuracy and 

interpretability of diabetes risk models. 

➢ We conduct a comprehensive analysis of the importance of different dietary 

and stress features, revealing that dietary factors have a more significant 

impact on diabetes risk than stress factors, with positive stress showing a 

greater influence than negative stress. 

➢ We demonstrate the practical application of this model in clinical settings, 

achieving high prediction accuracy while maintaining model interpretability, 

thereby providing a tool that can be effectively used by healthcare 

professionals. 

The remainder of this paper is organized as follows: Section 2 provides 

a detailed overview of the related work in the fields of diabetes prediction and 

machine learning model interpretability. Section 3 describes the methodology, 

including data preprocessing, feature selection, and the machine learning 

models used. Section 4 presents the experimental results and analysis, 

highlighting the impact of dietary and stress factors on diabetes prediction. 

Section 5 discusses the implications of the findings and potential areas for 

future research. Finally, we are summarizing the key contributions and their 

relevance to clinical practice. 

2. Related Word 

2.1 Diabetes Detection 

Diabetes mellitus, particularly type 2 diabetes, has become a major 

global public health issue, with its prevalence rapidly increasing in both 

developed and developing countries. Early detection of diabetes is crucial for 

effective management and prevention of complications. Traditionally, diabetes 

detection has relied on clinical tests such as fasting plasma glucose (FPG), oral 

glucose tolerance test (OGTT), and glycated hemoglobin (HbA1c) levels 

(American Diabetes Association, 2014b). However, these tests often require 

invasive procedures and may not be suitable for large-scale screening. In 

recent years, machine learning techniques have been increasingly applied to 
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diabetes detection, leveraging a wide range of clinical and non-clinical data, 

including demographic factors, lifestyle habits, and genetic markers (Choi et al., 

2019; Kavakiotis et al., 2017). While these approaches have shown promise, 

most existing studies have primarily focused on using electronic health records 

(EHRs) and clinical biomarkers for prediction. For instance, logistic regression, 

support vector machines (SVM), and decision trees have been widely utilized, 

but these methods often lack interpretability, making it difficult for clinicians to 

understand the underlying factors driving the model's predictions (Faruque & 

Sarker, 2019). Moreover, while some studies have explored the use of deep 

learning models, such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), these models, despite their high accuracy, are often 

criticized for their "black-box" nature, which poses significant challenges for 

interpretability in clinical settings (Shickel et al., 2017). These models tend to 

obscure the contribution of individual features, making it difficult to derive 

actionable insights about how diet, lifestyle, or other factors influence diabetes 

risk. A notable gap in the existing literature is the limited focus on dietary data 

as a primary predictive feature for diabetes. While some studies have 

incorporated lifestyle factors, very few have concentrated on diet as the central 

element of their models (Luo et al., 2016). Additionally, the combination of 

dietary and stress-related features in diabetes prediction has been sparsely 

explored, despite the well-documented impact of stress on metabolic health 

(Hackett & Steptoe, 2017). This represents a significant oversight, as 

integrating these factors could enhance the predictive power and practical 

relevance of machine learning models in real-world clinical applications. 

Another critical limitation of existing studies is the lack of comprehensive feature 

analysis, particularly in terms of understanding which specific dietary or lifestyle 

factors most strongly influence diabetes risk. Most machine learning models 

provide predictions without offering insights into the relative importance of each 

feature or the potential correlations between them (Lundberg, 2017). This limits 

the clinical applicability of these models, as healthcare providers require not 

only accurate predictions but also a clear underlying factors to make informed 

decisions. In contrast to these limitations, our study advances the field by 

focusing on the interpretability of machine learning models in diabetes detection. 

We integrate both dietary and stress-related data to develop a comprehensive 

prediction model, addressing the gaps in current research. Furthermore, we 

conduct a thorough feature importance analysis and correlation analysis to 

identify the most influential factors contributing to diabetes risk. By doing so, we 

aim to provide a more transparent and clinically applicable approach to diabetes 

detection, offering healthcare professionals actionable insights that can inform 

preventive and therapeutic strategies. 

2.2 Diet and Lifestyle 

Diet and lifestyle play critical roles in the development and management 

of type 2 diabetes. Numerous studies have established the link between dietary 
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patterns, lifestyle choices, and diabetes risk. Diets high in refined sugars, 

saturated fats, and processed foods are consistently associated with an 

increased risk of developing type 2 diabetes (Hu et al., 2001). Conversely, diets 

rich in whole grains, fiber, fruits, and vegetables are associated with a reduced 

risk (Montonen et al., 2003). In addition to diet, lifestyle factors such as physical 

activity, smoking cessation, and moderate alcohol consumption are also 

recognized as crucial in mitigating the risk of type 2 diabetes (Laaksonen et al., 

2005; Willi et al., 2007). Despite the extensive research on diet and lifestyle 

factors, most studies have treated these factors in isolation, without fully 

considering the complex interplay between diet, lifestyle, and psychological 

factors, particularly stress. Stress, both chronic and acute, has been identified 

as a significant contributor to metabolic dysfunction and diabetes risk (Hackett 

& Steptoe, 2017). However, the distinction between different types of stress—

positive (e.g., challenge-related stress) and negative (e.g., hindrance-related 

stress)—and their specific impacts on diabetes has not been thoroughly 

explored in the existing literature. The study by Gan et al. provides important 

insights into how different dimensions of job stress affect mental health (Gan, 

2014), emphasizing the differential effects of positive and negative stress. Their 

meta-analysis revealed that while both types of stress have significant health 

implications, the mechanisms through which they affect health outcomes may 

differ. This distinction is crucial for diabetes research, as stress is a known 

modifiable risk factor for metabolic diseases, including type 2 diabetes (Lloyd 

et al., 2005). However, there has been a lack of research directly examining the 

effects of positive and negative stress on diabetes risk, particularly in the 

context of dietary and lifestyle factors. Our study seeks to address this gap by 

incorporating both dietary patterns and stress-related data, specifically 

differentiating between positive and negative stress, to develop a more 

comprehensive model for diabetes prediction. This approach not only enhances 

the predictive power of the model but also offers new insights into how these 

factors interact to influence diabetes risk. By doing so, we provide a more 

nuanced understanding of the roles that diet, lifestyle, and stress play in 

diabetes, highlighting the need for personalized intervention strategies that 

consider the full spectrum of these factors. In summary, while significant 

progress has been made in understanding the impact of diet and lifestyle on 

diabetes, there remains a critical need to explore how different types of stress 

interact with these factors to influence disease risk. Our study contributes to 

this emerging area of research by integrating dietary and stress-related data, 

offering a more holistic approach to diabetes prediction and management. 

2.3 Interpretable Machine Learning 

The study of Interpretable Machine Learning (IML) is of critical 

importance in the healthcare domain, particularly in disease diagnosis. In this 

context, the decision-making process of models must not only achieve high 

accuracy but also possess a high degree of interpretability. This interpretability 
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is directly tied to the trustworthiness and effectiveness of clinical decisions, as 

healthcare professionals and patients need to understand how a model arrives 

at its conclusions. This understanding ensures that these decisions are ethically 

sound and can be appropriately applied and validated in real-world scenarios 

(Molnar, 2020; Ribeiro et al., 2016). In some cases, interpretability may even 

outweigh predictive accuracy because it allows clinicians to identify and correct 

potential model biases, thereby avoiding misdiagnoses or inappropriate 

treatments (Macqueen, 1967). In this study, we explored three distinct machine 

learning approaches—K-means clustering, Random Forest classification, and 

Deep Neural Networks (DNN)—to assess their interpretability in the context of 

diabetes detection, particularly when incorporating diet and stress-related 

features. Each method not only represents a different learning paradigm but 

also reflects the key challenges that machine learning faces in healthcare: how 

to accurately capture underlying health risk factors from complex data while 

ensuring that the reasoning process of the model is understandable and 

trustworthy to medical practitioners. We compared these methods to evaluate 

their strengths and limitations, with the aim of providing more reliable machine 

learning solutions for disease diagnosis. K-means clustering is a classic 

unsupervised learning method. Although its direct interpretability is limited, it 

can still offer some level of explanation through the analysis of cluster centroids 

(Macqueen, 1967). The core of K-means lies in partitioning the data into several 

non-overlapping clusters, where analyzing the centroids can help researchers 

identify typical characteristics of each cluster (Jain, 2010). In the context of 

diabetes detection, these cluster centroids can be used to infer dietary and 

stress patterns associated with higher or lower risks (Lloyd, 1982). While K-

means is inherently a "black-box" model, interpreting the cluster centroids can 

provide useful insights for clinical research (Murphy, 2012). In contrast, 

Random Forest is a supervised learning method with an inherent mechanism 

for feature importance evaluation, which grants it a high degree of 

interpretability (Breiman, 2001a). Random Forest operates by constructing a 

large number of decision trees, each contributing to the final outcome. Its 

feature importance metrics (e.g., Gini impurity or information gain) allow 

researchers to identify which features are most influential in the model's 

decision-making process (Breiman, 2001b). In this study, this characteristic of 

Random Forest enabled us to quantify the impact of dietary and lifestyle factors 

on diabetes risk, thereby supporting medical decision-making (Liaw, 2002). 

However, Deep Neural Networks (DNN), due to their complex architecture and 

highly nonlinear nature, are often regarded as "black-box" models that are 

difficult to interpret directly (Goodfellow, 2016). Despite typically excelling in 

predictive accuracy, the multiple layers of nonlinear transformations within 

DNNs make it challenging to understand their decision-making processes 

(Montavon et al., 2018). To address this challenge, several interpretability 

techniques, such as SHAP (SHapley Additive exPlanations) values and LIME 

(Local Interpretable Model-agnostic Explanations), have been proposed in 
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recent years (Lundberg, 2017; Ribeiro et al., 2016). These methods 

approximate the model's output to generate more interpretable local or global 

explanations, helping researchers understand which input features have the 

greatest influence on specific predictions (Shrikumar et al., 2017). In our study, 

although we employed DNN models combined with these interpretability 

techniques, the experimental results indicated that DNNs did not demonstrate 

a clear advantage in diabetes detection. We primarily used them as a 

comparison to evaluate their performance on the same dataset relative to other 

models like Random Forest and K-means (Sundararajan et al., 2017). In 

summary, K-means clustering provides limited interpretability through the 

analysis of cluster centroids, Random Forest offers direct interpretability 

through feature importance analysis, and while deep learning models are 

complex, they can still achieve a degree of interpretability through advanced 

explanation techniques. Each of these methods has its own strengths, 

collectively demonstrating how to enhance the transparency and interpretability 

of models while ensuring accuracy, thereby supporting clinical applications in 

diabetes detection (Tjoa & Guan, 2020). 

3. Data and Interpretable Methodology  

3.1 Data Source and Structure 

The data for this study are sourced from the China Health and Nutrition 

Survey (CHNS), a longitudinal survey that provides comprehensive information 

on health, nutrition, and lifestyle across various provinces in China. The survey, 

a collaboration between the Carolina Population Center at the University of 

North Carolina and the Chinese Center for Disease Control and Prevention, is 

recognized for its extensive and diverse dataset, making it a valuable resource 

for public health research. This study utilizes dietary data from the CHNS 

Constructed Dietary Value dataset (c12diet) and stress-related data from the 

CHNS Physical Examination dataset (pstress_12). The dietary data include 

variables such as carbohydrate intake (D3CARBO), fat intake (D3FAT), calorie 

intake (D3KCAL), and protein intake (D3PROTN). Stress-related data include 

variables such as perceived stress (U551 to U564). For this analysis, we 

focused on dietary and stress variables in relation to diabetes diagnosis, as 

indicated by the U24A variable, shown in Table 1, with bolded text representing 

positive stress, and unbolded text representing negative stress. 

Table 1: (a) The Key Features used in Our Analysis 

FEATURE DESCRIPTION 

D3CARBO 3-Day Average: Carbohydrate Intake (g) 

D3FAT 3-Day Average: Fat Intake (g) 

D3KCAL 3-Day Average: Calorie Intake (kcal) 

D3PROTN 3-Day Average: Protein Intake (g) 

U551 Upset 
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Table 1: (b) The Key Features used in Our Analysis 

FEATURE DESCRIPTION 

U552 Unable to Control Important Things 

U553 Nervous and stressed 

U554 Deal Successfully 

U555 Effectively Cope With 

U556 Confident About Your Ability 

U557 Things Were Going Your Way 

U558 Could Not Cope With 

U559 Able To Control Irritations 

U560 Were on Top of Things 

U561 Angered 

U562 Thinking About Things 

U563 Able To Control the Way You Spend Your Time 

U564 Difficulties 

U24A Diagnosed with Diabetes (Output) 

3.2 Methodologies 

In this section, we delve into the specific machine learning 

methodologies applied in this study, focusing on their implementation and 

interpretability aspects. 

3.2.1 K-means Clustering: Interpretability through Cluster Analysis 

K-means clustering is a widely used unsupervised learning algorithm 

that aims to reveal underlying structures in data by partitioning it into K clusters. 

In this study, we employed K-means clustering as the initial step to explore the 

impact of dietary and stress-related variables on diabetes detection. The 

interpretability of K-means primarily lies in analyzing the positions of cluster 

centers and the distribution of data points within each cluster. This information 

can help us understand which patterns of diet and stress are more closely 

associated with the risk of diabetes. The core idea behind the algorithm is to 

minimize the sum of the distances between data points and their corresponding 

cluster centers. For each data point 𝑥𝑖, we calculate its Euclidean distance to 

each cluster center 𝑐𝑗and assign the point to the nearest cluster. This process 

is represented by the following equation: 

𝑑(𝑥𝑖 , 𝑐𝑗) = √∑ (𝑥𝑖𝑚 − 𝑐𝑗𝑚)2𝑛
𝑚=1                      (1) 

where 𝑥𝑖𝑚 represents the value of the 𝑚th feature of data point 𝑥𝑖, and 

𝑐𝑗𝑚  represents the value of the 𝑚 th feature of cluster center 𝑐𝑗 . Through 

iterative updates, the algorithm adjusts each cluster center to minimize the total 

within-cluster variance, which is the sum of the squared distances from each 
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data point to its cluster center: 

𝑊(𝐶) = ∑ ∑ ‖𝑥𝑖 − 𝑐𝑗‖2
𝑥𝑖∈𝑆𝑗

𝐾
𝑗=1                     (2) 

The optimization process stops when the cluster centers converge, 

meaning that they no longer change significantly between iterations. The 

unique aspect of K-means lies in its intuitive clustering results; although often 

considered a "black box," we can infer the representative characteristics of 

each cluster by analyzing the positions of the cluster centers. Additionally, this 

study introduces the concept of positive and negative stress, allowing us to use 

K-means clustering to identify which types of stress have a greater impact on 

diabetes. Compared to traditional K-means analysis, this approach provides 

richer interpretability by integrating different types of stress into the clustering 

analysis. 

3.2.2 Random Forest Classification: Interpretability through Decision 

Rules 

Random Forest is a powerful supervised learning algorithm that 

constructs multiple decision trees to perform classification or regression tasks. 

Its interpretability is derived not only from feature importance analysis but also 

from the examination of individual decision tree rules. The widespread 

application of Random Forest in the medical field is partly due to its ability to 

provide a transparent decision-making process, which is crucial for clinical 

applications. Each decision tree in the Random Forest is built on a bootstrapped 

sample of the training data. For each node, the algorithm selects a feature to 

split the data based on criteria such as maximizing information gain or 

minimizing Gini impurity. Gini impurity 𝐺𝑖𝑛𝑖(𝑡) is a commonly used metric to 

assess the purity of a node and is calculated as follows: 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1                           (3) 

where pi  represents the proportion of samples belonging to class i at 

node t. By minimizing Gini impurity, the decision tree selects the feature that 

best separates the different classes, leading to a clear decision path. Another 

commonly used splitting criterion is information gain, which measures how 

much a feature reduces the uncertainty at a node. The information gain is 

calculated as follows: 

𝐼𝐺(𝑡, 𝑓) = 𝐻(𝑡) − ∑
|𝑡𝑣|

|𝑡|𝑣∈𝑉(𝑓) 𝐻(𝑡𝑣)                  (4) 

where 𝐻(𝑡)  is the entropy at node t, 𝑉(𝑓)  represents the possible 

values of feature f, and 𝑡𝑣 denotes the set of child nodes after splitting by f. 

Higher information gain indicates that the feature is more effective at classifying 
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the data, making it a better candidate for splitting. Random Forest combines 

the predictions of multiple decision trees to improve model stability and 

accuracy. The final output is determined by majority voting (for classification) or 

averaging (for regression) the predictions of all trees. This ensemble approach 

reduces the risk of overfitting associated with individual decision trees and 

provides more robust predictions. In Random Forest, feature importance is 

quantified by evaluating the contribution of each feature to the model's 

decisions across all trees. This can be achieved by summing the reductions in 

Gini impurity caused by each feature: 

𝐹𝐼(𝑓) =
1

𝑇
∑ 𝛥𝑇

𝑡=1 𝐺𝑖𝑛𝑖𝑡(𝑓)                       (5) 

where 𝐹𝐼(𝑓)  represents the importance of feature 𝑓 , T is the total 

number of trees, and 𝛥𝐺𝑖𝑛𝑖𝑡(𝑓)  is the reduction in Gini impurity caused by 

feature 𝑓  in tree t. In this study, we enhanced interpretability by not only 

performing traditional feature importance analysis but also by examining the 

decision paths within individual trees in the Random Forest. This dual approach 

provided deeper insights into how specific features, such as dietary and stress 

variables, contribute to diabetes prediction. Such transparency is invaluable in 

clinical decision-making, offering healthcare professionals concrete guidance 

based on the model's internal reasoning. 

4. Experimental Results and Analysis 

In this section, we conducted two main experiments to evaluate the 

predictive power of our models. The first experiment utilized only dietary 

structure data, while the second experiment incorporated both positive and 

negative stress data alongside the dietary data. The results indicate that adding 

stress data significantly improves the model's accuracy and generalizability, 

particularly in capturing the nuanced effects of positive stress on diabetes risk. 

Given the imbalance in our dataset—where the number of diabetes patients 

was significantly lower than that of healthy individuals—we applied data 

preprocessing techniques, including up sampling and down sampling, to 

balance the dataset. Additionally, all features were normalized to ensure 

consistency across the models. For transparency and reproducibility, all code 

used in these experiments is available upon request from the corresponding 

authors. 

4.1 Analysis of Results Only Based on Dietary Structure  

In this section, we analyze the performance of the model when only 

dietary structure features are used for diabetes detection. The features 

considered in this analysis include protein intake (d3protn), carbohydrate intake 

(d3carbo), fat intake (d3fat) and calorie intake (d3kcal). Our results show that 

the model achieved an impressive prediction accuracy of 99.67% as shown in 
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Table 2 and 3, indicating that dietary structure alone can effectively distinguish 

between diabetic and non-diabetic individuals. This high accuracy suggests that 

the dietary patterns captured by these features are strongly associated with the 

risk of diabetes. 

Table 2: Classification Report for Diabetes Prediction Using Random Forest 

CLASS PRECISION RECALL F1-SCORE SUPPORT 

NO DIABETES (0) 1.00 0.99 1.00 18,708 

DIABETES (1) 0.99 1.00 1.00 17,816 

ACCURACY 
  

99.67% 36,524 

Table 3: Confusion Matrix of Diabetes Prediction Using Random Forest 

CLASS NO DIABETES (0) DIABETES (1) 

NO DIABETES (0) 18708 120 

DIABETES (1) 0 17816 

Feature Importance: Among the four dietary features analyzed, 

carbohydrate intake (d3carbo) was identified as the most influential factor as 

shown in Fig.1, with the highest importance score of 0.2791. This result 

highlights that carbohydrate consumption plays a more significant role in 

diabetes detection compared to the other three dietary factors. The other 

features, including protein, fat, and calorie intake, also contributed to the 

model's predictions but to a lesser extent. 

 

Figure 1: Feature Importance in Random Forest Model Based on Dietary Structure 

Correlation Analysis: To explore the relationships between the four 

dietary features, we conducted a correlation analysis. The results, as shown in 

Fig. 2, indicate that while some features exhibit moderate correlations, none of 

these correlations are statistically significant (all p-values > 0.05). This lack of 

significant correlation suggests that each dietary feature contributes 

independently to the model, providing unique and non-redundant information. 
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This independence among features enhances the robustness of the feature 

importance rankings, ensuring that the model's predictions are not driven by 

redundant or highly correlated inputs. 

 

Figure 2: Feature Correlation Heatmap in Random Forest Model Based on Dietary Structure 

Model Interpretability: Although the model based solely on dietary 

structure achieved high predictive accuracy, the decision-making process 

behind these predictions remains complex. As shown in Fig. 3, the features 

overlap between the two outcome classes, which further complicates the 

understanding of the model's decision pathways. Even though the random 

forest model relies on just four features, the rules it generates are still difficult 

to interpret directly, as illustrated in Fig. 4. This complexity highlights a common 

trade-off in machine learning models: as accuracy improves, interpretability 

often diminishes. In this case, while we can trust the model's predictions, 

understanding the exact decision-making process the model follows remains 

challenging. 

 

(a) d3fat                     (b) d3protn 
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(c) d3kcal                  (d) d3carbo 

Figure 3: Sample Distribution of Four Features 

 

Figure 4: Multiple Decision Tree Rules for Random Forest 

In contrast, the DNN model trained on the same dietary features 

performed poorly in comparison, further underscoring the strength of the 

Random Forest model in capturing the relevant dietary patterns. However, the 

inability of the deep learning model to outperform Random Forest in this 

scenario suggests that more complex models do not necessarily lead to better 

outcomes when interpretability and limited feature sets are critical. 

Table 4: Accuracy On DNN Model in Different Datasets 

DATASETS DIETARY STRUCTURE DIETARY STRUCTURE+ LIFE STRESS 

ACCURACY 70.85% 95.04% 

The analysis demonstrates that carbohydrate intake is a key factor in 

predicting diabetes, and dietary structure alone provides a strong basis for 

diabetes detection. In the next section, we will explore whether combining 

dietary features with stress-related data can enhance both the predictive power 

and interpretability of the model. 
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4.2 Analysis of Results Added with Life Stress 

In this section, we introduce the inclusion of life stress features into our 

predictive models. The stress features, as shown in Table 1, are categorized 

into positive and negative stress. By incorporating these stress features, we not 

only achieve improved results in the Random Forest model but also enable 

easier and more accurate predictions of diabetes in neural networks in Fig.4 

and K-means clustering models in Fig.5. The addition of stress features 

enhances the interpretability of the models, particularly in capturing complex 

relationships that were previously difficult to discern. This improvement allows 

for the effective use of non-invasive, simple daily features to predict at-risk 

populations early, facilitating timely intervention.  

 

Figure 4: Performance of DNN Mode in the Added with Life Stress 

 

Figure 5: Classification Results after PCA Reduction in K-means Clustering 

Moreover, we conducted a correlation analysis to explore the 

relationship between stress and dietary features. The results indicate a 

significant correlation between stress and dietary habits. Specifically, dietary 

features are negatively correlated with stress, suggesting that certain dietary 

patterns may help mitigate stress levels, or conversely, that higher stress levels 

may be associated with reduced intake of specific dietary components.  
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Figure 6: Correlation Matrix of Dietary and Stress Features 

This negative correlation implies a potential bi-directional influence, 

where managing diet could serve as a strategy to alleviate stress, and vice 

versa. These findings highlight the importance of considering both dietary and 

stress-related factors in predictive models for diabetes, as they may provide 

valuable insights for early detection and prevention strategies. 

4.3 Analysis of Importance of Dietary and Stress Features  

In this section, we examine the importance of various dietary and stress 

features in predicting diabetes within our models. As illustrated in the 

accompanying feature importance chart in Fig. 7, dietary features (represented 

by blue bars) exhibit greater importance than stress features in our models. 

Notably, among the stress features, positive stress (represented by green bars) 

is more influential than negative stress (represented by red bars). These finding 

challenges traditional assumptions, where negative stress is typically seen as 

the primary contributor to adverse health outcomes, including diabetes. 

 

Figure 7: The Effect of Diet and Stress on Diabetes Detection 
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The importance of these features was assessed using a neural network 

model, where input variables are processed through multiple layers of neurons, 

each connected by weights. The magnitude of these weights determines the 

contribution of each feature to the final prediction—larger weights indicate a 

greater impact. Our analysis reveals that dietary features, such as carbohydrate 

intake (d3carbo), caloric intake (d3kcal), fat intake (d3fat), and protein intake 

(d3protn), significantly influence the model’s predictions. These findings 

highlight the critical role of dietary patterns in diabetes risk, likely due to their 

direct effects on metabolism and blood glucose levels. Interestingly, positive 

stress indicators (green bars) exert a stronger influence on diabetes prediction 

than negative stress indicators (red bars). This result is counterintuitive to the 

traditional view that primarily associates negative stress with poor health 

outcomes. The significant impact of positive stress might suggest that stress 

related to motivation or challenges could influence physiological processes 

associated with diabetes in ways not previously understood, potentially 

affecting lifestyle choices that contribute to diabetes risk. In conclusion, the 

analysis underscores the dominant role of dietary habits in predicting diabetes 

risk, while stress factors, particularly positive stress, also play a significant role. 

The unexpected finding that positive stress is more influential than negative 

stress suggests a need to revisit traditional perspectives on stress and health, 

opening new avenues for research and potential interventions in diabetes 

prevention and management. 

5. Conclusion 

This study underscores the significant role of dietary habits and stress in 

diabetes risk and their implications for physical activity, sports performance, and 

metabolic health. By leveraging interpretable machine learning models, we 

identified the complex interactions between carbohydrate intake, stress 

responses, and glucose metabolism, offering new insights into early diabetes 

detection and prevention strategies tailored to active individuals and athletes. 

Our findings highlight that diet, particularly carbohydrate consumption, is the 

most critical determinant of diabetes risk, reinforcing the importance of 

nutritional regulation in optimizing metabolic function, endurance, and physical 

performance. Additionally, the impact of stress on diabetes risk challenges 

conventional assumptions, with positive stress exhibiting a stronger influence 

on metabolic dysfunction than negative stress, suggesting that adaptive stress 

responses play a crucial role in physiological adaptation and energy regulation. 

The practical implications of these findings are highly relevant to sports science, 

rehabilitation, and exercise physiology. Diabetes-related impairments in 

glucose metabolism, insulin sensitivity, and muscle function can significantly 

hinder an individual's ability to engage in regular physical activity, leading to 

reduced exercise tolerance, slower recovery, and diminished performance in 

sports and daily activities. Understanding the interactions between diet, stress, 

and metabolic health allows for the development of personalized interventions 
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that combine structured exercise regimens, dietary modifications, and stress 

management strategies to prevent and manage diabetes more effectively. 

Athletes, fitness professionals, and sports medicine practitioners can apply 

these insights to enhance training programs, improve recovery protocols, and 

support long-term metabolic health in individuals at risk of diabetes. Future 

research should focus on longitudinal studies assessing the impact of dietary 

adjustments and stress regulation on metabolic resilience in physically active 

populations. Additionally, investigating how different types of exercise, including 

endurance training, resistance training, and high-intensity interval training 

(HIIT), influence glucose regulation and diabetes risk could provide further 

evidence for integrating exercise-based interventions into metabolic health 

management. By bridging the gap between machine learning, nutritional 

science, stress physiology, and sports medicine, this study contributes to the 

development of precision-based strategies for diabetes prevention and 

performance optimization. As the integration of technology, data-driven 

diagnostics, and personalized medicine continues to advance, the potential for 

improving metabolic health, enhancing physical endurance, and preventing 

diabetes-related complications through targeted lifestyle interventions becomes 

increasingly promising. Healthcare professionals, sports scientists, and fitness 

experts must continue to explore innovative, data-driven approaches to ensure 

that individuals at risk of diabetes can maintain optimal physical function, 

participate in sports, and lead healthier, more active lives. 
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