
Rev.int.med.cienc.act.fís.deporte - vol. 24 - número 98 - ISSN: 1577-0354 

77 

Luo J. (2024) BIOMEDICAL DATA ANALYSIS OF JUMP MECHANICS IN TRACK AND FIELD 

ATHLETES AND ITS EFFECT ON INJURY. Revista Internacional de Medicina y Ciencias de 

la Actividad Física y el Deporte vol. 24 (98) pp. 77-89. 

DOI: https://doi.org/10.15366/rimcafd2024.98.006 

ORIGINAL 

BIOMEDICAL DATA ANALYSIS OF JUMP MECHANICS 
IN TRACK AND FIELD ATHLETES AND ITS EFFECT 

ON INJURY 

Jie Luo 

Physical Education College of Chengdu University, Chengdu, Sichuan, 610106, China 

E-mail: 18048051911@163.com 

 

Recibido 05 de enero de 2024 Received January 05, 2024 

Aceptado 09 de septiembre de 2024 Accepted September 09, 2024 

ABSTRACT 

The jumping action plays a very important role in many sports in athletics. 

Jumping action depends on explosive force, which is the quality of strength in 

a short period of time, and is the important basic quality of many sports. 

Mechanical research on jumping movement can explore ways to improve sports 

performance from the perspective of mechanics, and can also explore effective 

measures to prevent sports injuries. Biomedical data analysis can analyze a 

large amount of data in depth and reveal the rules behind the huge data. In this 

paper, biomedical analysis technology is used to analyze the mechanical data 

of track and field jumping movements, to explore the mechanical characteristics 

of high jumping movements and the intrinsic connection between movements 

and injuries, and good results are achieved.  

KEYWORDS: Biomedical Data Analysis; Jump Mechanics; Injury 

1. INTRODUCTION 

Among the special training of track and field, the status of strength 

quality is particularly important (Maity & Das, 2022). Explosive force belongs to 

the speed power, is a short time power quality, is the important basic quality of 

many sports. It is related to the speed of movement, jumping and the ability to 

change course, and is an important influence factor in determining the winners 

and losers of the game and the performance of the sport. Athletics jumping 

sports belong to the physical dominance of the speed and power type item 

group, including distance (long jump, triple jump) and height items (high jump, 

pole vault), so jumping sports athletes should have in addition to good flexibility, 
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bouncing power, but also have a certain speed quality and explosive force 

(Wang, Kurillo, Ofli, & Bajcsy, 2015). Jumping sports program with its unique 

requirements and characteristics, in the training and competition process is very 

easy to occur sports injuries (Rehm & Moradali, 2018; Shi, Xu, Pan, Yan, & 

Zhang, 2018). The jumping program generally consists of four parts, namely, 

running, jumping, vacating and landing, the body vacates and the ground to 

form a reaction force, at this time the knee joints and ankle joints and the waist 

and abdomen become the largest point of force (Z. Zhang et al., 2022). The 

most injured parts of jumping athletes are knee joints, followed by ankles, feet 

and waist. In jumping sports, the knee joint needs to yield and stirrup extension 

to get fast jumping speed, the force point is concentrated in the knee joint, which 

produces a large load on the knee joint, and over time causes the cartilage of 

the knee joint surface to wear out, resulting in knee osteoarthritis and meniscus 

injury. Patella not only to protect the stability of the joint, but also to extend the 

knee force, patella repeated wear and tear prone to chondromalacia patella. 

Jumping projects on the waist strength and flexibility requirements are also very 

high, the need for athletes to jump in the air for twisting, turning, jerking and 

other actions, so that the lumbar region to withstand a greater load resulting in 

lumbar injury (Pachella, 2021). With the development of information technology 

in the medical field, more and more human biometric data are acquired for 

storage and utilization. The content of the data includes the data of previous 

drug use, disease history data, blood pressure, weight, doctor's consultation 

data, medical image data, blood data, various hormone data, and part of the 

genetic data. It is believed that with the advancement of technology in the 

medical field, more and more human biometric data can be collected. These 

biomedical data themselves contain a large amount of information, which on 

the one hand can be utilized to help the relevant personnel to determine the 

health status of the human body and to screen for relevant diseases by utilizing 

the knowledge of medical experience. On the other hand, it can help 

researchers to study specific diseases in the human body characteristic 

reaction performance, and further study the principle of disease (Kong et al., 

2020; Lloyd & Oliver, 2012). In recent years, with the rise of artificial neural 

network model, especially in many fields such as biomedical polymer sequence 

analysis, medical image analysis and auxiliary diagnosis, it has achieved very 

good experimental results (McClelland, 1979; Sahoo & Biswal, 2021). 

Compared with expert systems, deep neural networks have the advantages of 

self-learning ability, associative memory and fault tolerance, especially parallel 

processing, high efficiency and high accuracy. Meanwhile, the advantages of 

neural network system are more prominent than the traditional expert system 

in classification diagnosis and intelligent control and optimization solution 

based on classification. Although the classification method of neural network 

has achieved good classification effect, it depends on the model parameters to 

a large extent, and it is difficult to avoid the problem of model "overfitting" (X. 

Zhang, Shan, Wang, Wan, & Li, 2019). Deep neural networks were used to 
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analyze the biomedical data on mechanics of jumping movements in track and 

field, to examine the mechanical characteristics of jumping movements from a 

new perspective, and to improve the understanding of jumping movements from 

different directions. At the same time, injury research is integrated into it to 

explore the relationship between jumping movements and injuries. In this paper, 

we take high jump as the research object, and use the deep neural network 

model to analyze the biomedical data of high jump mechanics, in order to 

understand the connection between high jump and injury (Datta, Barua, & Das, 

2019; Maia, 2023; Sternberg, 1969). 

2. Methodology 

2.1 Human Body Modeling 

By constructing the three-dimensional skeleton model of the athlete, its 

three-dimensional characteristic points can be obtained. Therefore, the high 

jumper is regarded as a collection of rigid bodies connected by joints, and the 

connection relationship between joints is represented by line segments. The 

motion of high jump is simplified into the motion of the athlete's skeleton, and 

the three-dimensional human skeleton model is obtained, which is described 

by the following Figure 1, and the coordinates of the joints in the model, are 

called the three-dimensional characteristic points. 

 

Figure 1: Three-dimensional skeleton (Lloyd et al., 2016). 

In this paper, only five of the important body joints of the athlete are used 

for the calculation, which are: the left ear, the left shoulder, the left hip, the left 

toe, and the center of mass of the body five objects. They are abstracted into 

five nodes and the coordinate position data are embedded into our model for 

calculation. Our goal is to predict the position of joint points during a high jump. 

We assume the existence of 𝑁  joints, denoted as 𝑝1, 𝑝2, ⋯ , 𝑝𝑁  body joints 

𝑝𝑖(𝑖 ∈ [1, 𝑁])  at time step 𝑡  the position of the joints labeled as 𝑆𝑖
𝑡 =
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(𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 , 𝑧𝑖
𝑡). 𝑆𝑖

𝑡(𝑖 = 1,2,⋯ ,𝑁) denotes the position of the joints at time step 𝑡 =

1,⋯ , 𝑇𝑜𝑏𝑠, our goal is to predict the future position of the 𝑆𝑖
𝑡 at time step 𝑡 =

𝑇𝑜𝑏𝑠 + 1，⋯，𝑇𝑜𝑏𝑠 + 𝑇𝑝𝑟𝑒𝑑 . In this paper we choose 𝑇𝑜𝑏𝑠 = 6 , 𝑇𝑝𝑟𝑒𝑑 = 6 ,i.e., 

set up a sliding window with a sliding step of 1 each time, and use the 

coordinates of the joint positions in the first 6 moments of each window to 

predict the coordinates of the joint positions in the next 6 moments. 

2.2 Analysis of High Jump Movement Patterns 

 

Figure 2: The backward high jump. 

The process of jumping for a high jump can be divided into several states 

of motion at discrete points in time, as shown in the Figure 2. The states of 

motion include the position of the joints of the athletes at this moment in time, 

their speeds, and so on. Considering the process of high jump as a physical 

system, the trajectory of the future moment is determined by the trajectory and 

state of the historical moment, so the trajectory of high jump is a complex 

temporal causal and nonlinear relationship. We utilize the information of the 

athlete's state in the historical time point to infer the trajectory of the athlete in 

several future moments. Therefore, the high jump trajectory prediction problem 

can be regarded as a complex sequence prediction problem, in which the 

positions of the athlete's joints at the given previous moments are predicted to 

infer the positions of the athlete's joints at the next moments. 

𝑆𝑡+𝑇 = 𝑓(𝑆𝑡−1, 𝑆𝑡−2, ⋯ , 𝑆𝑡−𝑇𝑜𝑏𝑠 , 𝜃𝑘), 𝑇 = 0,1,2,⋯ , 𝑇𝑝𝑟𝑒𝑑, 𝑘 = 0,1,2,⋯ , 𝐾        (1) 

𝑆𝑖
𝑡 = (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡 , 𝑧𝑖

𝑡), 𝑖 = 1,2,3,4,5                          (2) 

𝑆𝑡 = [𝑆1
𝑡 , 𝑆2

𝑡 , 𝑆3
𝑡 , 𝑆4

𝑡 , 𝑆5
𝑡]                             (3) 

𝑔(𝑆1
𝑡 , 𝑆2

𝑡 , 𝑆3
𝑡 , 𝑆4

𝑡 , 𝑆5
𝑡 , 𝜃𝑘) ≤ 0, 𝑘 = 0,1,2,⋯ , 𝐾                  (4) 

Where 𝑆𝑡 denotes the position of the athlete's body joints at moment t

𝑇𝑝𝑟𝑒𝑑  forward predicted moments, 𝑇𝑜𝑏𝑠  the number of historical moments 

observed, i.e., for a certain moment 𝑖 , the high jump movement state and 
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trajectory of the previous moment is used to predict the movement trajectory of 

the future 𝑇𝑝𝑟𝑒𝑑 moment.𝜃𝑘 denotes the parameters related to the movement 

trajectory, and 𝐾 denotes the number of parameters. 𝑓 denotes the pattern of 

the high jump movement trajectory. 𝑆𝑖
𝑡  denotes the position of the athlete's 

joint points at the moment of 𝑡, where 𝑖 = 1,2,3,4,5 denotes the left ear, the left 

shoulder, the left hip, the left toe, and the center of mass of the body, 

respectively.𝑔 denotes the limitation of the swing range of the body joints to 

each other, and the degree to which the swing amplitude of the joints is 

influenced by the other joints. In the following, we consider a spatio-temporal 

graphical neural network model to portray this movement pattern. 

2.3 STGAT Network Architecture 

The STGAT network model is used. Its structure is built around the 

seq2seq model and consists of three components: an encoder, an intermediate 

state, and a decoder. The Encoder module is made up of three parts: two types 

of LSTMs and a GAT. LSTMs are included in the original STGAT structure, and 

in this paper, we express the original STGAT as STGAT-LSTM, whereas the 

spatio-temporal graph neural network (Encoder module) in the original STGAT 

structure is expressed as STGAT. The intermediate state contains all nodes' 

temporal and geographical information. Based on the intermediate states, the 

decoder module generates future trajectories. We embed the position of the 

body joints at the time step 𝑡, 𝑆𝑖
𝑡 = (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡 , 𝑧𝑖

𝑡), cure data into the network as 

input to the Encoder module. The architecture of the STGAT network is shown 

in Figure 3. 

 

Figure 3: STGAT network structure (Santamaria & Webster, 2010). 

2.4 Motion Encoder: M-LSTM 

Each node has its own motion pattern, which includes various 
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displacements, velocities, accelerations, and so on. It has been demonstrated 

that LSTM can more successfully capture the historical motion trajectory of a 

single node (Snodgrass, Luce, & Galanter, 1967). As a result, we employ an 

LSTM for each node to capture its motion state, and this LSTM is denoted by 

M-LSTM. The node position 𝑆𝑖
𝑡 is embedded into a fixed-length vector 𝑒𝑖

𝑡 and 

this vector is used as an input to the LSTM unit: 

𝑒𝑖
𝑡 = 𝜙(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡 , 𝑧𝑖

𝑡;𝑊𝑒𝑒)                        (5) 

𝑚𝑖
𝑡 = 𝑀𝐿𝑆𝑇𝑀(𝑚𝑖

𝑡−1; 𝑒𝑖
𝑡;𝑊𝑚)                    (6) 

where 𝜙(⋅) denotes an embedding function and 𝑊𝑒𝑒 is the embedding 

weight. At time step 𝑡, the M-LSTM's hidden state is 𝑚𝑖
𝑡. These criteria apply 

to all joints. The M-LSTM weights are 𝑊𝑚, and these parameters are shared 

by all nodes. 

2.5 Graph Attention Networks 

Using only one LSTM does not capture the interaction between body 

joint points. In order to show the information during the jumping process, we 

consider the joint points of the high jumper as nodes on the graph and utilize 

the graph neural network approach (Quazi, Saha, & Singh, 2022). As GAT 

collects information from surrounding nodes by giving varying degrees of 

priority to each node. As a result, GAT is used as a spatial connection 

mechanism between joint sites. Edges on the graph are used to denote the 

presence of joints and the interactions between joints. Following this approach, 

the high jumper's joint points are treated as nodes on the graph in each time 

step. GAT acts on graph structure data and computes the features of each 

graph node by paying attention to its neighbors using a self-attentive technique. 

The GAT is built by superimposing graph attention layers. Figure 4 depicts the 

introduction of the graph attention layer. 

 

Figure 4: Schematic diagram of the structure of the attention layer. 
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The input to the graph attention layer is ℎ = {ℎ⃗ 1, ℎ⃗ 2, ⋯ , ℎ⃗ 𝑁}, where (ℎ𝑖) ∈

𝑅𝐹 , 𝑁 is the number of nodes and 𝐹 is the per-node feature dimension. The 

output is ℎ′ = {ℎ⃗ 1
′ , ℎ⃗ 2

′ , 𝑐𝑑𝑜𝑡𝑠, ℎ⃗ 𝑁
′ }, where ℎ′ 𝑖

𝐹′

 is the number of nodes and 𝐹 is 

the number of feature dimensions per node. ℎ′ 𝑖
𝐹′′

and 𝐹 can be unequal. The 

coordinates of the joint points of the high jumper 𝑚𝑖
𝑡(𝑡 = 1,⋯ , 𝑇𝑜𝑏𝑠) are fed into 

the graph attention layer. The coefficients of the node (𝑖, 𝑗)pairs in the attention 

mechanism will be calculated like this: 

𝛼𝑖𝑗
𝑡

𝑒𝑥𝑝(𝐿𝑒𝑠𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑚𝑖
𝑡‖𝑊𝑚𝑗

𝑡]))

∑ 𝑒𝑥𝑝(𝐿𝑒𝑠𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑚𝑖
𝑡‖𝑊𝑚𝑗

𝑡]))𝑘∈𝑁𝑖

                      (7) 

Here ∥ is the connectivity operation, 𝑎𝑇 denotes the transpose, 𝛼𝑖𝑗 is 

the attention coefficient of nodes 𝑗 to 𝑖 at time step 𝑡, atijatij is the attention 

coefficient of nodes 𝑗 to 𝑖 at time step 𝑡. Situations are the neighbors of node 

𝑖  on the wavenumber. 𝑊 ∈ 𝑅𝐹′×𝐹  is the matrix of linear transformations 

shared by the weights for each node (𝐹 is the dimension of 𝑚𝑖
𝑡 and 𝐹′ is the 

dimension of the outputs) and 𝑎 ∈ 𝑅2𝐹′
 is the vector of weights for a single-

layer feed-forward neural network, normalized by the SoftMax function with 

LeakyReLU. After obtaining the normalized attention coefficients, the formula 

for the output of node 𝑖 in the graph attention layer at time step 𝑡: 

�̂�𝑖
𝑡 = 𝜎(∑ 𝛼𝑖𝑗

𝑡 𝑊𝑚𝑗
𝑡

𝑗∈𝑁𝑖
)                           (8) 

where 𝜎  is a nonlinear function. The above equation shows how a 

single graph attention layer works. In our scheme, four graph attention layers 

are used. �̂�𝑖
𝑡 (the output of the two graph attention layers) is the aggregated 

hidden state of node 𝑖 at time step 𝑡, which contains spatial influences from 

other nodes. 

2.6 Integration of Spatial and Temporal Information 

Modeling spatio-temporal interaction processes in high jump sports 

scenarios, many LSTM-based methods. Only the information hidden at the 

same time step is considered. We use two LSTMs to model the interaction of 

explicit information, and we call this LSTM G-LSTM: 

𝑔𝑖
𝑡 = 𝐺 − 𝐿𝑆𝑇𝑀(𝑔𝑖

𝑡−1, �̂�𝑖
𝑡;𝑊𝑔)                      (9) 
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Where �̂�𝑖
𝑡 is from Equation (8). 𝑊𝑔 is the weight of the G-LSTM, which 

is shared among all sequences.  Two LSTMs (M-LSTM and G-LSTM) 

represent the motion pattern of each joint point as well as the temporal 

correlation of the interaction in the encoder component. We integrate these two 

components to achieve spatial and temporal information fusion. At time step 

𝑇𝑜𝑏𝑠, for each athlete joint, two hidden variables (𝑚𝑖
𝑇𝑜𝑏𝑠 , 𝑔𝑖

𝑇𝑜𝑏𝑠) are obtained by 

M-LSTM, G-LSTM. These two variables are then put into two different multilayer 

perceptual machines 𝛿1(⋅) with 𝛿2(⋅). Next, their outputs are connected: 

�̄�𝑖 = 𝛿1(𝑚𝑖
𝑇𝑜𝑏𝑠)                             (10) 

�̄�𝑖 = 𝛿2(𝑔𝑖
𝑇𝑜𝑏𝑠)                              (11) 

ℎ = �̄�𝑖‖�̄�𝑖                                 (12) 

2.7 Prediction of High Jump Trajectories 

We must learn the motion patterns of the high jump joint points from a 

genuine high jump trajectory dataset. We require models that can generate 

several reasonable and realistic trajectories due to the uncertainty in the 

mobility of the joint points. The majority of past work quantifies uncertainty by 

first learning the parameters of a Gaussian process and then deriving future 

positions taken from this distribution.  

The model minimizes the negative log-likelihood loss of the true 

locations of the joints under the Gaussian distribution during the training phase. 

However, because the sampling procedure is not trivial, this approach presents 

issues in backpropagation. Our model's intermediate state vector is made up of 

three parts: the hidden variable M-LSTM, the hidden variable G-LSTM, and the 

added noise. The intermediate state vector is computed as: 

𝑑𝑖
𝑇𝑜𝑏𝑠 = ℎ𝑖‖𝑧                               (13) 

where 𝑧  denotes noise and ℎ𝑖  comes from equation (12). The 

intermediate state vector 𝑑𝑇𝑜𝑏𝑠 is used as the initial hidden state of decoder 

𝛿3(⋅). The predicted relative position is given by equation: \ 

𝑑𝑖
𝑇𝑜𝑏𝑠+1

= 𝛿3(𝑑𝑖
𝑇𝑜𝑏𝑠+1

) (14)(𝛥𝑥𝑖
𝑇𝑜𝑏𝑠+1

, 𝛥𝑦𝑖
𝑇𝑜𝑏𝑠+1

, 𝛥𝑧𝑖
𝑇𝑜𝑏𝑠+1

) = 𝑑𝑖
𝑇𝑜𝑏𝑠+1

  (15) 

where 𝛿3(⋅) is a linear layer that passes the intermediate state variables 
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through the 𝛿3(⋅) linear layer to obtain the position coordinates of the predicted 

time step 𝑇𝑜𝑏𝑠 + 1.  

The losses due to different noises are as follows: for each node, the 

model generates multiple predicted trajectories by randomly sampling 𝑧 from 

𝑁(0,1)  (standard normal distribution). Then, we choose the smallest model 

loss: 

𝐿𝑣𝑎𝑟𝑖𝑒𝑡𝑦 = 𝑚𝑖𝑛
𝐾

∑ ∑ ‖�̂�𝑙
𝑡−𝑌𝑖

𝑡‖
𝑇𝑝𝑟𝑒𝑑
𝑡=1

𝑁
𝑡=1

𝑁𝑇𝑝𝑟𝑒𝑑
                  (16) 

Where 𝑌𝑖is the true trajectory of the athlete's joint 𝑖, �̂�𝑙
𝑘 is the trajectory 

computed by the model, and 𝐾 is a hyperparameter. By considering only the 

best trajectories, the network is enabled to satisfy the output space that 

conforms to the past trajectories. 

3. Model Validation Experiments 

3.1 Data Description 

The data in this paper are the seven high jump competition data of a 

professional high jumper. The data were collected from the video shot by the 

camera at the competition site, and analyzed by the high jump video software 

to get the 3D coordinates of the 21 joints and important parts of the athlete as 

well as the center of mass from the start of the run-up step to the airborne stage 

at intervals of 0.02 seconds. There are about 70 time points of each important 

body parts of the three-dimensional coordinate data. The data are time series 

data, each time point data interval is 0.02 seconds. 

3.2 Analysis of Evaluation Indicators 

We use the data from the first 6 races to train the model． The data from 

the last competition is used for testing． The baseline models chosen in this 

paper are: LSTM, GRU, STGAT-LSTM, STGAT-GRU. The evaluation metric we 

chose is the Average Displacement Error (ADE) of the sliding window prediction 

multiple times: the mean square error of all the estimated positions in the 

predicted trajectory and the true trajectory. the mean square error of all 

estimated positions in the trajectory. 

𝐴𝐷𝐸 =
∑ ∑ ‖�̂�𝑙

𝑡−𝑌𝑖
𝑡‖

𝑇𝑝𝑟𝑒𝑑
𝑡=1

𝑁
𝑡=1

𝐹∗𝑁∗𝑇𝑝𝑟𝑒𝑑
                         (17) 

Where 𝑌𝑖  is the true trajectory of the athlete's joint 𝑖 , �̂�𝑙
𝑘  is the 

trajectory computed by the model, and 𝐹 is the coordinate dimension of the 

node 3. The model predictions are shown in Table 1 ． 
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Table 1: Model prediction results. 

Models ADE(m) 

LSTM 0.0588 

STGAT LSTM 0.0379 

GRU 0.0640 

STGAT GRU 0.0298 

From the experimental results, the prediction effect of the prediction 

model combining the graph attention layer is improved. In terms of the average 

position error in each direction, STGAT-LSTM reduces 0.0209 meters 

compared with the pure LSTM model, and STGAT-GRU reduces 0.0342 meters 

compared with the pure GRU. The high jump movement process is a complex 

system with mixed temporal and spatial information and interactions between 

joints, and the experimental results show that STGAT has certain advantages 

in processing and fusing spatial and temporal information. 

4. Jumping Maneuvers and Injury Risk Studies 

4.1 Methods of Analyzing Mechanical Data 

Three-dimensional movement analysis technology can help researchers 

collect data during real-time movement and perform relevant biomechanical 

analyses (Trujillo et al., 2010), so scholars have widely utilized this movement 

technology analysis tool to explore the underlying mechanical factors that may 

lead to ACL injuries. Studies have shown that ACL injuries are commonly seen 

in movements such as the sharp stop and jump, lateral cut and change of 

direction, and jump-landing. Therefore, scholars mainly simulate these ACL 

injury-prone movements in the laboratory and use a 3D motion technology 

acquisition and analysis system to collect and analyze the biomechanical 

characteristics of the lower extremity during the execution of the movement to 

speculate the risk factors that may lead to ACL injuries or to identify the high-

risk groups that are prone to ACL injuries. 

Due to the variability of sports, the movements of athletes with ACL 

injuries also show a certain degree of variability. According to the existing 

literature, the jumping maneuver, the side-cutting change of direction maneuver, 

and the jump-landing maneuver are the main injury risk assessment maneuvers. 

The landing cushion phase is a high-risk phase for the occurrence of ACL 

injuries. Therefore, even though there are various maneuvers used to assess 

ACL injury risk, scholars have mainly studied the landing phase of various 

maneuvers. 

4.2 Risk Prediction Studies for Jumping Movements and Injuries 

Prospectively predicting people at high risk of ACL injury is also a hot 



Rev.int.med.cienc.act.fís.deporte - vol. 24 - número 98 - ISSN: 1577-0354 

87 

research topic among scholars. Scholars mainly collect the biomechanical 

characteristics of the lower limbs when the subjects complete the landing 

movement and analyze them in order to predict those who may be at a higher 

risk of injury and intervene in time to reduce the risk of injury. However, from 

the current research, the results of scholars are not consistent, which makes 

some scholars believe that the laboratory test movement is not a good predictor 

of ACL injury risk. It is conducted the DJ movement test on 256 female athletes 

and followed up their injuries for two years, and concluded that the knee 

abduction moment can be a better predictor of ACL injury risk in female athletes, 

with sensitivity and specificity reaching 4.0% and 4.0%, respectively. They 

concluded that knee abduction moment was a good predictor of ACL injury risk 

in female athletes, with a sensitivity and specificity of 78% and 73%, 

respectively.  

However, it did not observe an association between knee abduction 

moment and ACL injury risk in 1855 female athletes tested and followed up in 

the DJ maneuver, and it is found that knee inversion during the DJ maneuver 

was associated with an increased risk of ACL injury in young female athletes, 

but with poor sensitivity and specificity. This study also did not observe an 

association between knee abduction angle, knee abduction moment, knee 

flexion angle, and vGRF with ACL injury risk.Leppanen et al, however, 

concluded that knee flexion angle and peak vGRF were associated with the 

prediction of their ACL injury risk during DJ maneuvers, but also demonstrated 

poor sensitivity and specificity. This suggests a limitation in the applicability of 

the laboratory landing task in representing the motor strategy of jump landing 

movements in a specialized sport (Sport specific task). It also suggests that we 

need to use movements that are closer to those used in competition to predict 

people at high risk of ACL injury. 

5. Conclusion 

This paper adopts the biomedical data analysis method to construct a 

model using deep learning technology to predict and analyze the high jump 

movement from the mechanical point of view, to explore the mechanical 

characteristics of jumping action, and the relationship between jumping action 

and injury. It provides technical references for reducing the injuries received by 

track and field athletes due to jumping movements in training and competitions. 

It also provides a basis for coaches to scientifically formulate training programs 

and guide training. 
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