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ABSTRACT 

With the rapid development of national fitness and professional sports, the 

problem of sports trauma has become more and more prominent, which has 

caused serious impact on the training and competition of athletes. It is urgent 

to improve the level of diagnosis and treatment. The analysis technique of 

identifying and diagnosing cells and tissues for athletes in medical images with 

the help of deep learning algorithms has gradually become a popular research 

direction in the field of medical image diagnosis. Convolutional neural network 

(CNN), as an efficient deep learning algorithm, is widely used in the field of 

medical image diagnosis. However, since CNN models need to initialise the 

parameters before training, various problems may arise when the initial 

parameters are not properly selected. Firstly, for the initial weights of the CNN 

model, the traditional method is to use random initialisation, which leads to 

problems such as slow training speed and low diagnostic accuracy of the model. 

Secondly, for the selection of the hyperparameter of the model, the traditional 

method is to use manual adjustment or grid search, which not only consumes 

a lot of time and computational resources, but also usually fails to select the 

most suitable hyperparameter, which leads to the problems of lower diagnostic 

accuracy of the model. In order to solve the above problems, this paper firstly 

proposes a new self-supervised medical image segmentation architecture. By 

designing an agent task for pre-training, the model is better able to extract and 

process the visual information of medical images, and then fine-tuned on the 

segmentation task, as a way to solve the difficulty of the lack of large-scale 

labelled data for medical images. The effectiveness of the proposed algorithm 

for athletes in the medical image segmentation task is verified through a large 
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number of experiments conducted on two mainstream datasets. And the 

comparison with other mainstream models shows that the model performs well 

in most scenarios. 

KEYWORDS: Computational Intelligence; Athletes Injury Diagnosis; Treatment 

Decision Support; Medical Image Processing; Deep Learning 

1. INTRODUCTION 

The prevalence and complexity of sports injuries pose challenges to 

traditional diagnosis and treatment. The use of medical image processing and 

machine learning and other technologies can achieve more accurate injury 

identification and diagnosis, and provide intelligent treatment decision support 

based on big data analysis, which helps shorten the recovery time of athletes 

and improve competitive performance. At the same time, through continuous 

data accumulation and analysis, a sound knowledge base for the diagnosis and 

treatment of sports injuries can be established, providing a solid foundation for 

future research and application in this field. Therefore, this study has important 

practical significance and development prospects, and has important value for 

improving the service level of sports medicine. Medical image segmentation is 

a very important aspect of medical image processing as it helps doctors to 

better understand the athlete's condition (Isensee et al., 2019; Siddique et al., 

2021).  

In medical images, different tissues, organs or lesion areas have 

different density, morphology, texture and other features, which are very crucial 

for doctors to make correct diagnosis and treatment. Traditional medical image 

segmentation methods (Hu et al., 2021; Ma et al., 2021) usually require the 

manual design of features and the use of rule-based algorithms for 

segmentation, which consumes a lot of time and money. This method 

consumes a lot of manpower and time, and the segmentation results are usually 

not accurate in the professional field. This method consumes a lot of manpower 

and time, and the segmentation results are usually not accurate enough in 

professional fields. However, with the recent advances in deep learning and 

other technologies, deep learning-based medical image segmentation (Liu et 

al., 2021; Wang et al., 2022) has become a mainstream method. techniques 

based on deep learning have become mainstream methods. These methods 

can automatically learn the features of medical images and use models such 

as convolutional neural networks to obtain more efficient and accurate 

segmentation results. networks to obtain more efficient and accurate 

segmentation results (Claudino et al., 2019; Xiao et al., 2023).  

In the era of athlete data, there are a large number of different types of 

data in the athlete biomedical field. Common biomedical data include: omics 

data, drug substance data, disease data, electronic medical record data, 
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imaging data, wearable device data, and athlete report data. wait. According to 

statistics, as of August 25, 2021, the GEO database in the United States has 

included more than 100,000 sets of data, coming from 18,847 platforms, 

containing more than 2.62 million samples, involving 4,290 species. Among 

them, there are 42,628 sets of human data, coming from 5,325 platforms and 

containing nearly 1.41 million samples. The European Array Express database 

contains 71,250 sets of data, including more than 2.29 million samples, with a 

data volume of 46.83TB. These data usually have characteristics such as large 

data volume, high dimensionality, small samples, high noise, and uneven data 

distribution. Because deep learning algorithms enable computer systems to 

improve from experience and data through continuous self-learning, large-scale 

biomedical data is considered a prerequisite for the success of many deep 

learning algorithms. Therefore, in the biomedical field, a large amount of real 

and effective medical data makes deep learning algorithms feasible in 

intelligent medical applications (Conze et al., 2023; Qureshi et al., 2023). In the 

field of intelligent medical applications (Arabahmadi et al., 2022), medical 

imaging data stored in image form holds more than 90% of medical information 

and is the most important information source in disease diagnosis and 

treatment. The analysis of these medical images is also the most important 

technology to assist in the clinical diagnosis and treatment of diseases. means, 

so the comprehensive intelligence of medical imaging data analysis and 

diagnosis plays a crucial role in the construction of intelligent medical 

application fields. However, due to the technical limitations of traditional medical 

testing instruments and equipment, and the differences in the technology of 

medical staff to detect disease conditions, even the best medical staff with the 

highest level of technical skills in diagnosing and detecting diseases cannot be 

compared with each other. If you don't cooperate, you will also face the risk of 

missed diagnosis or incorrect diagnosis.  

Therefore, in order to reduce various risks in disease diagnosis, in this 

article, we study two types of medical imaging data through deep learning 

algorithms (Zhan, 2024). The traditional clinical diagnosis method that relies on 

the subjective experience of doctors has some limitations, and the diagnosis 

time is long, which cannot meet the needs of athletes' timely recovery. At the 

same time, medical imaging technologies such as CT, MRI and ultrasound 

continue to develop, and image quality and resolution have been greatly 

improved, providing a good foundation for intelligent diagnosis using computer 

vision and machine learning. In addition, the accumulation of massive sports 

injury data and the wide application of AI technologies such as deep learning in 

the medical field have created favourable conditions for the establishment of 

intelligent diagnostic models. To sum up, the physical and mental health of 

athletes is crucial to the development of sports career, and improving the 

diagnosis and treatment level of sports injuries has become an urgent problem 

to be solved in sports medicine. The research on athlete intelligent injury 

diagnosis in medical image processing came into being, which provides new 
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technical support. Convolutional Neural Network (CNN) is a widely used deep 

learning algorithm. In medical imaging diagnosis, CNNs are mainly used in the 

recognition of medical images such as X-Ray, Magnetic Resonance Images 

(MRI), Histopathological images, Fundus images, and Computed Tomography 

(CT).  

The CNN is mainly used to back-propagate the error of the forward 

propagation result by means of continuous iteration to update the parameters 

of the model, i.e., Weights and Biases, to finally achieve the learning objective 

(Wu et al., 2022). In this way, the selection of initial parameters plays a crucial 

role in the training effect of CNN. The initial parameters of CNN are mainly 

divided into two kinds, the initial weights and the Hyperparameter of the model. 

Generally speaking, the initial weights of CNN models are randomly initialised 

by various methods, which can lead to problems such as model training failure 

in the process of training the model, while the Hyperparameter of the CNN 

model is usually selected according to the performance of the model in the 

training process, which can cause a large amount of resource consumption. 

For these two problems of CNN model training, we hope to find an effective 

solution. Meta-heuristic algorithms are very suitable for the optimisation of 

complex neural network models due to their simplicity and high efficiency. Meta-

heuristic algorithms are based on intuitive or empirical constructions, and 

provide a solution to the problem to be solved with acceptable resource 

consumption. CNN is a multilayered artificial neural network constructed to 

mimic the biological vision system, and in recent years researchers have been 

committed to combining the advantages of meta-heuristic algorithms and CNNs 

to achieve the goal of using both the meta-heuristics and the CNNs.  

In recent years, researchers have endeavoured to combine the 

advantages of meta-heuristic algorithms and CNNs to achieve the goal of 

efficiently solving problems using neural networks while overcoming the 

shortcomings of neural networks (Khan et al., 2022). Furthermore, the 

convolutional neural network approach inherently suffers from a serious 

limitation: at the initial stage of the input image, since the convolutional kernel 

of a CNN is usually not very large, the model can only make use of local 

information in order to understand the input image, and this local perspective 

may limit the distinguishability of the features extracted by the encoder 

(Farshad et al., 2022).  

This is a drawback that cannot be completely avoided using CNNs (Song 

& Montenegro-Marin, 2021). Of course, some plug-and-play modules based on 

self-attention mechanisms inserted between the encoder and the decoder can 

provide global context, allowing the model to better understand the image and 

improve features from a global perspective. However, if the model initially 

obtains the wrong features due to this local perspective, can it be corrected at 
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a subsequent stage using the global context, which creates new problems. In 

conclusion, self-supervised learning has a long history of research in the field 

of medical imaging and has received increasing attention and applications in 

recent years. Different researchers have proposed different self-supervised 

learning methods which provide more efficient and accurate solutions for 

medical image analysis and diagnosis (Ramkumar et al., 2022). The main 

contributions are as follows: 

(1) This paper proposes a new approach to medical image segmentation 

for athlete using Transformer models. This approach builds on the success of 

Transformer models in other computer vision tasks and demonstrates their 

potential for medical image segmentation. Experimental results on two 

benchmark datasets show that the proposed Transformer-based model 

outperforms current mainstream models in terms of segmentation accuracy and 

has good generalisation capabilities. 

(2) In this paper, a self-supervised pre-trained agent task is designed for 

learning feature representations that are more suitable for medical image 

segmentation. The task captures important image features for feature 

representation for segmentation with respect to human anatomy in medical 

images. The method differs from traditional supervised learning methods by 

avoiding the difficulty of acquiring large labelled datasets and provides a 

promising alternative for feature learning in medical image segmentation. 

2. Methodology 

In this paper, we propose a self-supervised pre-trained model designed 

for agent tasks targeting athlete medical images to pave the way for the 

proposal of Transformer-based self-supervised medical image segmentation, 

and specify the details of each agent task. Then each important module of the 

model and the whole is described in detail, including the attention mechanism 

and the extraction of multi-scale semantic information. 

2.1 Transformer Model 

Transformer is a deep learning model based on the attention mechanism, 

which was initially applied to natural language processing tasks, such as 

machine translation and text generation. Later, Transformer was also 

introduced into the field of computer vision for processing visual tasks, such as 

image classification, object detection, semantic segmentation, etc. In computer 

vision, Transformer is mainly applied to process sequence data, such as pixels, 

feature maps in images, etc. It captures the relationship between different 

elements in a sequence through the mechanism of self-attention and extracts 

the key information in the sequence for subsequent classification, detection, 

segmentation and other tasks. 
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Figure 1: Schematic diagram of the self-attention mechanism calculation. 

Compared to traditional convolutional neural networks, Transformer 

does not require a fixed window size or convolutional kernel size when 

processing sequence data, thus providing better scalability and adaptability. 

Transformer has achieved good performance in some tasks that require global 

information about an image, such as semantic segmentation and image 

generation. 

2.1.1 Self-Attention Mechanism 

Speaking of attention, it is used in graphic conversion in computers. 

Given a picture and a simple description of the picture, in order for the computer 

to learn the important and relevant information about both, we react to the 

weights of the different information by means of attention. Because a picture is 

composed of several pixel dots, it contains rich semantic information, but the 

vast majority of this information is redundant or even unrelated to the picture 

description. Similar to the perception of the world observed by people's eyes in 

real life, the focusing of our eyes is also a mechanism of attention, through 

which the observed object can be presented more clearly, and the blurring out 

of other secondary information will not affect the perception of the observed 

subject. Similarly, attention in this way gives a higher weight to the region 

corresponding to the graphic, which is more conducive to learning deeper 

features. Therefore, the interpretability aspect of attention in AI is more in line 

with our intuitive perception, as shown in Figure 1. The success of the 

Transformer family of models is largely attributed to the Self-Attention (SA) 

mechanism, as SA has the ability to establish dependencies over long 

distances. The key idea behind the SA mechanism is to learn self-alignment, 

i.e., to determine the relative importance of individual markers (patch 

embeddings) with respect to all other markers in the sequence. For a 2D image, 
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the image 𝑋𝑝 ∈ 𝑅𝐻×𝑊×𝐶 is first reshaped into a sequence of 2D vectors (called 

Flattened Patch) 𝑋𝑝 ∈ 𝑅𝑁×(𝑃
2𝐶), where 𝐻 and 𝑊 denote the height and width 

of the original image, respectively, 𝐶 denotes the number of channels, 𝑃 × 𝑃 

denotes the pixel size of each image block, and 𝑁 =
𝐻𝑊

𝑃2
 denotes the number 

of image blocks. These 2D vectors are projected into 𝐷 dimensional space 

through a trainable linear projection layer and can be represented in matrix form 

as 𝑋𝑝 ∈ 𝑅𝑁×𝐷. The goal of SA is to capture the intrinsic connection between all. 

this 𝑁embedding, which is done by defining three learnable weight matrices to 

transform the input 𝑋 into query, key-value pairs: 

𝐴 = softmax (
𝑄𝐾𝑇

√𝐷𝑞
)𝑉𝑊𝑉𝑖                          (1) 

𝑍 = Attention(𝑋) = 𝐴𝑉                          (2) 

2.1.2 Multiple Self-Attention Mechanism 

The MHSA is a model of an attention mechanism consisting of multiple 

SA blocks (also called headers). As shown in Figure 2, these blocks are 

connected according to channels to model the complex dependencies between 

different elements in the input sequence. Each block has its own learnable 

weight matrix, denoted by 𝑊𝑄𝑖  ,𝑊𝐾𝑖 , 𝑊𝑉𝑖 , which is used to calculate the 

weight of each element in the input sequence. By using multiple blocks, MHSA 

can better capture the interactions between different features in the sequence 

and improve the performance of the model. 

 

Figure 2: Schematic diagram of multi-head self-attention mechanism calculation. 
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𝑀𝐻𝑆𝐴(𝑄, 𝐾, 𝑉) = [𝑍0, 𝑍1，⋯ , , 𝑍ℎ−1]𝑊
𝑂                  (3) 

𝑍𝑖 = softmax(
𝑄𝑊𝑄𝑖(𝐾𝑊𝐾𝑖)

𝑇

√
𝐷𝑞

ℎ

)𝑉𝑊𝑉𝑖                    (4) 

Since the complexity of computing the soft max of the SA block is 

quadratic in the length of the input sequence, the SA block has a high 

computational overhead for processing long sequences such as high-resolution 

medical images, which limits its applicability. Recently, many efforts have been 

made to reduce the complexity, including sparse attention, linearised attention, 

low-rank attention, memory compression-based methods and improved MHSA.  

2.2 Proposed algorithm  

2.2.1 Sliding Window Transformer Module 

 

Figure 3: Schematic diagram of multi-head self-attention mechanism calculation. 

The Sliding Window Transformer module consists of two consecutive 

sub-modules, each Sliding Window Transformer sub-module consists of 

LayerNorm regularisation, Multihead Self-Attention Module, Residual 

Connection, and Multi-Layer Perceptron (MLP) with Nonlinear Activation 
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Function, as shown in Figure 3 below. The Window-based Multihead Self-

Attention Module (W-MSA) and Sliding Window-based Multihead Self-Attention 

Module (SW-MSA) are located in two consecutive sub-modules, where a 

LayerNorm layer is added before each MLP module and each MSA module, 

and they are connected after each module using a residual approach. It can be 

expressed by the following equation: 

�̂�𝑘 = 𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑘−1)) + 𝑧𝑘−1                    (5) 

𝑧𝑘 = 𝑀𝐿𝑃(𝐿𝑁(�̂�𝑘)) + �̂�𝑘                          (6) 

�̂�𝑘+！ = 𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑘)) + 𝑧𝑘                    (7) 

𝑧𝑘+1 = 𝑀𝐿𝑃(𝐿𝑁(�̂�𝑘+1)) + �̂�𝑘+1                     (8) 

The difference between SW-MSA and W-MSA is that the input features 

of the latter are divided into non-overlapping windows, each of which generally 

contains 𝑀 ×𝑀  blocks in the 2-dimensional plane and 𝑀 ×𝑀 ×𝑀 blocks in 

the 3-dimensional space. They will only complete self-attention within a local 

window, and the lack of effective information interaction between windows is 

very unfavourable for long-range feature extraction.  

To solve this in order to solve the problem without adding extra 

computation, an MSA with offset windows, i.e., SW-MSA, is added. by a kind of 

cyclic shifting efficient batch processing, some of the windows in the partitioned 

batch consist of multiple non-adjacent sub-windows in the feature map while 

maintaining the same number of windows as the regular partitioning. Due to the 

presence of the shifts, the computation of a set of two consecutive sub-

Transformer modules is completed each time, and the information between 

different windows can be transferred efficiently, which significantly enhances 

the modelling capability.  

2.2.2 Model Structure 

Previously, related work based on Transformer networks has been 

applied to medical image segmentation tasks. In these works, the Transformer 

module they set up was either used as an auxiliary module after the 

convolutional layer operation, or the Transformer module was simply used as a 

feature encoder at the deepest layer, resulting in a significant reduction in the 

advantages of the Transformer module for spatial contextual feature extraction. 

In contrast to previous work that speaks of Transformer as an auxiliary encoder, 

this section, inspired by sliding windows, proposes an improved TF-UNet 
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network model that directly applies Transformer to encode voxel images and 

positional embeddings in a more direct way, and the model structure is shown 

in Figure 4.  

 

Figure 4: Schematic representation of the proposed model structure. 

The encoder divides the input 3D medical image into non-overlapping 

voxel blocks by means of a Patch Partition module, where each voxel block is 

treated as a token, assuming a 3D voxel size of (𝐻′,𝑊′,𝐷′). The decoder feeds 

the feature representation extracted from the Bottleneck into a Res-Block 

consisting of two 3 × 3 × 3 convolutional layers with Instance normalisation. 

The output is up-sampled using the inverse convolutional layer and then 

spliced with the encoder's input of features in the same dimension as the 

residual block. The stacked features are used as the current layer's features 

and are sent to the upper layers, again going through the above steps, until 

they are upsampled to the model input voxel resolution. In addition, down 

sampling causes loss of information between context spaces, to circumvent this 

problem, this paper stacks and fuses multiple shallow features from the 

Transformer encoder at different scales with up sampled deep features from 

the CNN decoder. 
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Figure 5: Schematic representation of a self-supervised pre-training agent task. 

2.3 Self-Supervised Pre-Training Agent 

Depending on the photographer's shooting time or shooting place, the 

objects and scenery in natural scene images will present a variety of different 

spatial layouts. Unlike human medical images, the anatomical structures of 

human organs in images imaged by CT and other means present natural and 

consistent contextual information, i.e., the spatial distribution of different tissues 

or foci satisfies the basic laws of human anatomy. Therefore, with this feature, 

by designing suitable agent tasks, the underlying patterns of human anatomy 

can be learnt, enabling the model to learn deeper semantic and contextual 

information for medical images. For 3D medical images, it has more rich 

semantic information across planes between different slices than 2D images. 

To address this characteristic, the article designs three agent tasks of contrast 

coding, voxel rotation and mask reconstruction to achieve better image 

representation in terms of image similarity, geometric space and contextual 

information respectively, as shown in Figure 5.  

2.3.1 Comparative Encoding 

In visual representation learning, self-supervised contrast coding 

performs well in migration downstream tasks. Under normal circumstances, 

often multiple pairs of samples from the same input image after augmentation 

and generalisation transformations are regarded as positive samples, while 

samples generated from different input images are regarded as negative 
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samples. The task of contrast coding is to make the features extracted from 

these samples in the same feature space, with the positive sample pairs as 

close as possible, while the negative sample pairs are as far away from each 

other as possible, so as to make the feature map cover the semantic 

information of the input image more fully. This is done by taking the encoder of 

the proposed model separately and attaching a self-supervised comparison 

header containing a linear layer to the tail, and mapping the augmented input 

to the feature space denoted as 𝑧. Using cosine similarity as a distance metric 

for the encoded representation, a small batch of samples of the number 𝑁  is 

randomly sampled, and the image is passed through two different 

augmentations to generate 2𝑁 pairs of samples. Positive sample pairs 𝑧𝑖 and 

𝑧𝑗, and the rest of 2(𝑁 − 1) are encoded as contrasts between negative samples 

with respect to them, and the loss function is defined by the following formula.  

𝐿𝐶on = −log
exp(

sim(𝑧𝑖,𝑧𝑗)

𝜏
)

∑ 𝜆|𝑘≠𝑖|exp(
sim(𝑧𝑖,𝑧𝑗)

𝜏
)2𝑁

𝑘=1

                      (9) 

where 𝜆|𝑘≠𝑖| ∈ {0,1} is used to distinguish positive and negative sample 

pairs, which is equal to 1 if and only if 𝑘 ≠ 𝑖 , otherwise it is 0. 𝜏  is the 

normalized temperature hyperparameter to facilitate gradient backpropagation. 

𝑠𝑖𝑚 represents the 𝑙2 norm. 

2.3.2 Loss Function 

The encoder of the proposed model is trained to minimize the total loss 

function by using multiple pre-training objectives such as image rotation, mask 

reconstruction and contrastive encoding, as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑅𝑒 𝑐 + 𝜆2𝐿𝐶on + 𝜆3𝐿𝑅ot                   (10) 

where 𝜆1 + 𝜆2 + 𝜆3 = 1. 

3. Experiment and Results 

3.1 Datasets 

(1) MSD: The MSD consists of 10 segmentation tasks from different 

organs and image modalities, as shown in Figures 3-5, 6 sets of CTs and 4 sets 

of MRIs. These tasks are designed to address difficulties across medical 

images, including issues such as small training sets, small targets, unbalanced 

samples, and multimodal data. Therefore, the MSD challenge can be used as 

a comprehensive benchmark for assessing the generality of medical image 

segmentation methods. Some examples of the MSD dataset are shown in 

Figure 6. 
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Figure 6: Examples of MSD dataset. 

(2) BTCV:  The BTCV contains CT scans of 30 abdominal subjects, of 

which 13 organs were labelled under the supervision of a radiologist at 

Vanderbilt University Medical Centre. All CT scans were contrast-enhanced at 

the portal vein and consisted of 80 to 225 512 × 512-pixel slices with slice 

thicknesses ranging from 1 to 6 mm, some examples of the BTCV dataset are 

shown in Figure 7. 

 

Figure 7: Examples of MSD dataset. 
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3.2 Experimental Setup 

The experimental setup consists of two parts, the experimental 

environment setup used during the experiment and the hyperparameter setup 

of the model used, as shown in Tables 1 and 2. 

Table 1: Experimental environment setup. 

TYPE PARAMETERS 

OS Ubuntu 16.04 

GPU Nvidia RTX 4090 

RAM 24G 

PYTHON 3.6.5 

TRANSFORMERS  3.0.2 

PYTORCH 1.4.0 

Table 2: Hyperparameter settings. 

HYPERPARAMETER  VALUE 

BATCH_SIZE  32 

DROPOUT 0.4 

OPTIMIZER Adam 

LEARNING RATE 3e-5 

EPOCH_NUM 2000 

3.3 Experimental Results and Analysis 

The experiments were conducted for detailed experimental investigation 

of 10 kinds of task data on the MSD Challenge data. On the CT dataset, only 

the parameters of the pre-training weights were fine-tuned, including lungs, liver, 

colon, pancreas, and spleen; on the MRI dataset, such as the heart, brain 

tumour, prostate, and hippocampus, the experiments were trained from the 

beginning to be fair due to the domain differences between the CT images and 

the MRI images. The experimental results for each MSD task are shown in 

Table 3 and Figure 8. The experiments selected several current mainstream 

models and TF-UNet for comparison, including nn-UNet, DiNTs, TransUNet and 

TransBTS, etc. The experiments used U-Net as the benchmark model to make 

the experimental results more intuitive. In addition to the Dice Similarity 

Coefficient (DSC) and Hausdorff Distance (HD95), the Normalised Surface 

Distance (NSD) for voxels is also used to evaluate the results of the MSD 

experiments, and the NSD measures the degree of overlap between the 

predicted and the true values of the voxel surfaces, which is a better 

representation of the degree of consistency between two structures. express 

the consistency metric between the two structures.  
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Table 3: Results of the comparison of the comprehensive performance of the proposed 

method with other methods on the MSD dataset. 

METHOD AVERAGE ACCURACY 

DSC (%) NSD (%) HD95 (mm) 

U-NET 60.31 71.69 37.23 

NN-UNET 68.17 79.36 27.12 

DINTS 73.26 82.57 11.28 

TRANSBTS 72.69 83.02 10.98 

OURS 75.11 84.21 10.23 

 

Figure 8: Visualisation of results of comparative experiments. 

From Figure 8, it is easy to see that both TransBTS and TF-UNet are still 

able to segment clearly in the core tumour area, but outward to the enhanced 

tumour area and the whole tumour area, the TransBTS segmentation contour 

starts to tear, and the segmentation result is not as good as that of TF-UNet at 

several marked points in the figure. In addition, from Table 3, it can be seen that 

the proposed method achieved the best performance with an average DICE of 

75.11%, DSC of 84.21% and HD of 10.23mm to achieve the best performance.  

In addition, the results of the comparison experiments on the BTCV dataset are 

given in Table 4, again demonstrating the superiority of the proposed method. 
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Table 4: Results of the comparison of the comprehensive performance of the proposed 

method with other methods on the BTCV dataset. 

METHOD AVERAGE ACCURACY 

DSC (%) NSD (%) HD95 (mm) 

U-NET 80.65 85.36 23.69 

NN-UNET 81.25 86.95 22.17 

DINTS 82.23 88.64 21.25 

TRANSBTS 83.67 89.27 12.69 

OURS 85.16 90.02 11.36 

4. Conclusion 

In this paper, a new architecture for self-supervised medical image 

segmentation for athletes is proposed. The difficulty of the lack of large-scale 

labelled data for athlete’s medical images is addressed by designing an agent 

task for pre-training so that the model can better extract and process the visual 

information of medical images, and then fine-tuning it on the segmentation task. 

The effectiveness of the proposed algorithm in the medical image segmentation 

task is verified through a large number of experiments conducted on two 

mainstream datasets. And the comparison with other mainstream models 

shows that the model performs well in most scenarios. In future work we will 

explore more efficient and reliable self-supervised pre-training agent tasks for 

athletes to further improve the robustness and applicability of the model, and 

further research on how to improve the computational efficiency of the 

Transformer model for athletes. 
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