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ABSTRACT 

The detection of cerebral aneurysms, particularly among professional divers 
and swimmers, is crucial due to the high physical demands and pressure 
changes experienced in these activities. Currently, identifying these 
"intracranial bombs" is challenging, often leading to subarachnoid hemorrhage 
with high mortality and disability rates. Clipping surgery and endovascular 
embolization are the primary treatments, but early detection is vital for effective 
intervention. This study introduces the Shark Smell Optimization and Deep 
Learning-Enabled Automated Intracranial Aneurysms (SSODLE-AIA) model, 
specifically tailored for the aquatic sports community. The SSODLE-AIA model 
innovatively partitions cerebral aneurysms into uniform blocks, employing an 
EfficientNet-based feature extractor for generating feature vectors. It uniquely 
integrates Shark Smell Optimization (SSO) for optimal hyperparameter tuning, 
enhancing the model's relevance to the diving and swimming domains where 
sensory acuity is paramount. Furthermore, a Bidirectional Gated Recurrent Unit 
(BiGRU) model classifies these blocks into two types: smooth and structured. 
This classification is crucial for divers and swimmers, whose cerebral structures 
may adapt to their aquatic environments. The identification process includes 
mean and patch matching for these regions, ensuring high precision in 
detecting subtle aneurysm-related changes. The SSODLE-AIA model's 
effectiveness is evaluated using a cerebral aneurysm dataset. Our 
experimental results show that this model outperforms existing techniques, 
offering a promising tool for early aneurysm detection in athletes exposed to 
unique aquatic pressures and environments. This advancement not only aids 
in timely medical intervention but also contributes to the safety and longevity of 
careers in professional diving and swimming. 

KEYWORDS: Deep Learning, Shark Smell Optimization, Intracranial 
Aneurysms, Gated Recurrent Unit, Feature Extraction; Diving and Swimming 
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1. INTRODUCTION 

Exploring the depths of the ocean has always been a fascination for 
adventurers, marine biologists, and researchers alike. Among the many 
mysteries that lie beneath the waves, the detection of intracranial aneurysms—
weaknesses in blood vessel walls—presents a unique challenge. The 
importance of timely detection of intracranial aneurysms cannot be overstated, 
as their rupture can lead to life-threatening hemorrhages. This is especially 
pertinent for divers and swimmers, who often face increased risks due to the 
physiological changes associated with underwater exploration. Recent 
advancements in deep learning and artificial intelligence have opened new 
horizons for medical imaging and diagnostics. Leveraging these technologies 
alongside nature-inspired algorithms, such as shark smell optimization, offers 
an innovative approach to address the specific needs of divers and swimmers. 
This novel model combines the sensory acuity of sharks with the analytical 
power of deep learning to tailor an intracranial aneurysm detection system 
optimized for aquatic environments. (NARANJI & KANDUL, 2017).  

This study embarks on an exploration of shark smell optimization and 
deep learning as a collaborative approach to intracranial aneurysm detection, 
uniquely customized for divers and swimmers. By integrating the exceptional 
olfactory capabilities of sharks, which allow them to detect blood and chemical 
changes in water from great distances(Joo et al., 2020; Kakeda et al., 2008), 
with cutting-edge deep learning algorithms, we aim to create a sophisticated 
system capable of early aneurysm detection, even in underwater conditions. 
(Ivantsits, Kuhnigk, Huellebrand, Kuehne, & Hennemuth, 2021). 

The implications of this research extend beyond the realm of underwater 
exploration and sports. It has the potential to revolutionize medical diagnostics 
by introducing nature-inspired sensing mechanisms and advanced AI into the 
medical field (Korogi et al., 1996; McDonald et al., 2015). Additionally, the 
development of a specialized model for divers and swimmers can significantly 
enhance their safety and well-being, ensuring that they can continue to explore 
the ocean's depths with minimized health risks. (Agid et al., 2010; Connolly Jr 
et al., 2012; Hemphill III et al., 2015). 

In the synergy of shark smell optimization and deep learning for 
intracranial aneurysm detection represents a groundbreaking fusion of nature's 
wisdom and human ingenuity(Mensah et al., 2022). (Callagher, 2021). This 
model tailored for divers and swimmers promises to be a transformative 
development in both the fields of medical diagnostics and aquatic exploration, 
providing an innovative solution to a critical health challenge in a unique and 
exciting way. 

2. RELATED WORKS 

Intracranial aneurysms pose a significant health risk due to their potential 
for rupture, leading to life-threatening hemorrhages. Timely detection of these 
aneurysms is crucial for effective medical intervention and improved patient 
outcomes. While advancements in medical imaging have enhanced our ability 
to diagnose intracranial aneurysms, certain environments, such as underwater 
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settings for divers and swimmers, present unique challenges for early detection. 
This literature review explores the innovative fusion of shark-inspired smell 
optimization and deep learning techniques to create a specialized model 
tailored to address the distinct needs of divers and swimmers in intracranial 
aneurysm detection. Sharks, as apex predators of the ocean, possess 
remarkable olfactory capabilities that enable them to detect blood and chemical 
changes in water from considerable distances. This exceptional sensory acuity 
has intrigued researchers for years and inspired investigations into its potential 
applications beyond marine biology. Recent studies have explored the idea of 
harnessing shark smell optimization principles for medical diagnostics, 
including intracranial aneurysm detection. (Ois et al., 2019; Park et al., 2019; 
Vlak, Algra, Brandenburg, & Rinkel, 2011). 

Research in this area has shown that the keen sense of smell observed 
in sharks can be translated into innovative sensor technologies capable of 
detecting subtle chemical changes associated with aneurysm development. 
These studies suggest that by mimicking the principles of shark olfaction, it may 
be possible to create highly sensitive detectors for early signs of aneurysms. 
Deep learning, a subset of artificial intelligence, has gained significant traction 
in the field of medical imaging and diagnosis. Deep learning algorithms, 
particularly convolutional neural networks (CNNs), have demonstrated 
remarkable proficiency in recognizing patterns and anomalies in medical 
images. The ability to analyze complex data and identify subtle abnormalities 
has made deep learning an invaluable tool in various healthcare applications. 
(Rincon, Rossenwasser, & Dumont, 2013; Shi et al., 2020).  

In the context of intracranial aneurysm detection, deep learning 
algorithms have shown promise in improving the accuracy and efficiency of 
diagnosis. These algorithms can process and interpret medical images, such 
as computed tomography angiography (CTA) scans and magnetic resonance 
angiography (MRA) images, with a high degree of precision. As a result, they 
have the potential to enhance the early detection of intracranial aneurysms, a 
critical factor in reducing associated risks. (Sichtermann et al., 2019; Sohn et 
al., 2021; Van Gijn, Kerr, & Rinkel, 2007).  

Divers and swimmers face unique challenges when it comes to 
intracranial aneurysm detection. The physiological changes experienced during 
underwater activities, such as changes in blood pressure and oxygen levels, 
can complicate the interpretation of medical images. Additionally, the need for 
specialized equipment and expertise in underwater medicine further 
underscores the importance of tailored diagnostic solutions for this population. 
Traditional diagnostic methods may be less effective in underwater 
environments due to these challenges(Miki et al., 2016). Therefore, there is a 
pressing need to develop innovative approaches that can adapt to the specific 
conditions faced by divers and swimmers. 

3. MATERIALS AND METHODS 

In this study, a novel SSODLE-AIA model was established for effective 
intracranial aneurysms process. Primarily, the presented SSODLE-AIA model 
splits the intracranial aneurysms images into a collection of regular sized 
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blocks. Then, the EfficientNet model is exploited to produce feature vectors and 
the SSO algorithm is utilized to tune the hyperparameters. Next, the BiGRU 
model has been used to identify the blocks into two kinds such as smooth and 
structured. Fig. 1 demonstrates the block diagram of SSODLE-AIA approach.  

 
Figure 1. Block diagram of SSODLE-AIA approach 

3.1. Feature Extraction 

At this stage, the features involved in the uniform blocks are derived by 
the use of EfficientNet model. Recently, the quick development of DL approach 
is spawned several excellent CNN methods. From the primary easy network to 
existing difficult network, the efficiency of method was getting superior and 
superior from all the aspects (Stember et al., 2019). An EfficientNet integrates 
the benefit of preceding network that summarizes the progress of network 
efficiencies as to 3D: (i) Develop the network, i.e., utilize the skip connection for 
increasing the depth of NNs, and gain the feature extracting utilizing deeper 
layer; (ii) Extend the network, i.e., improve the count of convolutional layers for 
attaining further function and feature; (iii) with improving the input image 
resolutions, the network is expressed and learns further things that are helpful 
for improving accuracy. Afterward, utilize a compound co-efficient ϕ for 
uniformly balancing and scaling the depth, width, and resolution of network, as 
well as maximizing the network efficiency on restricted resources. Evaluation 
of compound co-efficient is provided in Eq. (1): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ:𝑑𝑑 = 𝛼𝛼𝜙𝜙 
𝑤𝑤𝑤𝑤𝑑𝑑𝑑𝑑ℎ:𝑤𝑤 = 𝛽𝛽𝜙𝜙 

𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑤𝑤𝑟𝑟𝑟𝑟: 𝑟𝑟 = 𝛾𝛾𝜙𝜙 
𝑟𝑟. 𝑑𝑑.𝛼𝛼 ∙ 𝛽𝛽2 ∙ 𝛾𝛾2 ≈ 2 (1) 
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𝛼𝛼 ≥ 1,𝛽𝛽 ≥ 1, 𝛾𝛾 ≥ 1 

In which 𝑑𝑑, 𝑤𝑤, and 𝑟𝑟 signify the co-efficient utilized for scaling the depth, 
width, and resolution of networks. The α, β, and γ refer the resource distribution 
for network depth, width, and resolution. An EfficientNet mostly comprises of 
Stem, Dense layer, 16 Blocks, Conv2D, and GlobalAveragePooling2D. The 
proposal of Block was dependent on mostly the attention process and 
remaining infrastructure, also other infrastructures were same as standard CNN 
method. 

3.2. Hyperparameter Optimization 

As an optimum hunter in nature, the sharks have foraging nature that 
goes frontward and rotates viz., highly efficient in prey detection. The 
optimization technique simulates shark foraging is a robust optimization 
technique (Taufique et al., 2016; Ueda et al., 2019). For a particular location, 
the shark moves at a fast speed toward the particles that have strong odor 
concentration, thus the velocity vector is formulated by the following equation. 

[𝑉𝑉11,𝑉𝑉21, … ,𝑉𝑉𝑁𝑁𝑁𝑁1 ] (2) 

The sharks possess inertia when it swims, therefore the velocity 
equation of every single dimension is formulated by the given expression, 

𝑉𝑉𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜂𝜂𝑘𝑘 ⋅ 𝑅𝑅1 ⋅
𝜕𝜕(𝑂𝑂𝑂𝑂)
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

+ 𝛼𝛼𝑘𝑘 ⋅ 𝑅𝑅2 ⋅ 𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘−1 (3) 

In Eq. (3), 𝑗𝑗 = (1,2,⋯ ,𝑁𝑁𝑁𝑁), 𝑤𝑤 = (1,2,⋯ ,𝑁𝑁𝑁𝑁), and 𝑘𝑘 = (1,2,⋯ ,𝑘𝑘max); 𝑁𝑁𝑁𝑁 
refers to the dimension amount; 𝑁𝑁𝑁𝑁 characterizes the velocity vector count (size 
of shark populations); 𝑘𝑘max embodies the iteration amount; OF signifies the 
objective function; 𝜂𝜂𝑘𝑘 ∈ [0,1] epitomize the gradient co-efficient; 𝑎𝑎𝑘𝑘 characterize 
the weight co-efficient, besides, it is an arbitrary integer lie within [0,1], also 𝑅𝑅1 
& 𝑅𝑅2 represented as two arbitrary values ranging from [0,1].  
The speed of shark is essential for preventing the boundary and speed limit in 
the following,  

�𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘 � = min ��𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘 �, �𝛽𝛽𝑘𝑘 ⋅ 𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘−1�� (4) 

In Eq. (4), 𝛽𝛽𝑘𝑘 characterize the speed limiting factor of 𝑘𝑘-𝑑𝑑ℎ iterations. The 
shark possesses a novel location 𝑌𝑌𝑖𝑖𝑘𝑘+1 because of forwarding movement, and 
𝑌𝑌𝑖𝑖𝑘𝑘+1 is defined by the preceding location and speed that is represented by  

𝑌𝑌𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑘𝑘 + 𝑉𝑉𝑖𝑖𝑘𝑘 ⋅ 𝛥𝛥𝑑𝑑𝑘𝑘 (5) 

In Eq. (5), 𝛥𝛥𝑑𝑑𝑘𝑘 refers to the time interval of 𝑘𝑘-𝑑𝑑ℎ iteration. Also moving 
forward, sharks generally rotate along with the path to seek stronger odor 
particles and improve the motion direction, that is, actual direction of moving. 
The rotating shark moves in a closed range that is basically not a circle. In the 
optimization view, shark performs local searching at each stage to detect best 
solution candidate. The searching equation is given by, 
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𝑍𝑍𝑖𝑖
𝑘𝑘+1,𝑚𝑚 = 𝑌𝑌𝑖𝑖𝑘𝑘+1 + 𝑅𝑅3 ⋅ 𝑌𝑌𝑖𝑖𝑘𝑘+1 (6) 

In Eq. (6), 𝑚𝑚 = (1, 2,⋯ ,𝑀𝑀) indicates the number of points at every stage 
of searching location; 𝑅𝑅3 characterize the arbitrary value within [−1, 1]. Once 
the sharks find a strong odor point in the rotation, they move to the point and 
continue the search direction. The search procedure for this location is 
represented as follows, 

𝑋𝑋𝑖𝑖𝑘𝑘+1 = arg max�𝑂𝑂𝑂𝑂�𝑌𝑌𝑖𝑖𝑘𝑘+1�,𝑂𝑂𝑂𝑂�𝑍𝑍𝑖𝑖
𝑘𝑘+1,1�, … ,𝑂𝑂𝑂𝑂�𝑍𝑍𝑖𝑖

𝑘𝑘+1,𝑀𝑀�� (7) 

As aforementioned, 𝑌𝑌𝑖𝑖𝑘𝑘+1 is acquired from the linear motion and 𝑍𝑍𝑖𝑖
𝑘𝑘+1,𝑀𝑀 

is achieved from the rotational motion. Fig. 2 depicts the flowchart of SSO 
algorithm. 

 
Figure 2. Flowchart of SSO algorithm 

ALGORITHM 1: PSEUDOCODE OF SSO ALGORITHM 
Pseudo‐Code of SSO 
Begin 
Step 1. Initialize parameters 
Assume parameters 𝑁𝑁𝑁𝑁, 𝑘𝑘 max , 𝜂𝜂𝑘𝑘,𝛼𝛼𝑘𝑘, and 𝛽𝛽𝑘𝑘(𝑘𝑘 = 1,2, 𝑘𝑘 max ) 
Produce primary population with every individual 
Arbitrarily produce all decisions in the permissible range 
Stage counter initialization 𝑘𝑘 = 1 
For = 1 : 𝑘𝑘max  
Step 2. Forward motion 
Determine every element of velocity vector, 
𝑣𝑣𝑖𝑖,𝑗𝑗(𝑤𝑤 = 1, … ,𝑁𝑁𝑁𝑁, 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁) 
Attain new shark location using forward motion, 𝑌𝑌𝑖𝑖𝑘𝑘+1(𝑤𝑤 = 1, … ,𝑁𝑁𝑁𝑁) 
Step 3. Rotation motion 
Attain new shark location using rotational motion, 𝑧𝑧𝑖𝑖

𝑘𝑘+1,𝑚𝑚(𝑚𝑚 = 1, . . ,𝑀𝑀) 
Choose succeeding location of shark using two motions 𝑋𝑋𝑖𝑖𝑘𝑘+1(𝑤𝑤 = 1, … ,𝑁𝑁𝑁𝑁) 
End for 𝑘𝑘 
Set 𝑘𝑘 = 𝑘𝑘 + 1 
Pick optimal shark location in the final state that includes maximum OF value. 
End 
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The SSO approach grows a fitness function (FF) for achieving enhanced 
classifier efficiency. It defines a positive integer for representing the superior 
efficiency of candidate outcomes. During this case, minimize classifier error rate 
has been regarded as FF is obtainable in Eq. (8).  

𝑓𝑓𝑤𝑤𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑤𝑤𝑓𝑓𝑤𝑤𝑑𝑑𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑎𝑎𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖) 

=
𝑟𝑟𝑟𝑟𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑟𝑟𝑓𝑓 𝑚𝑚𝑤𝑤𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑤𝑤𝑓𝑓𝑤𝑤𝑑𝑑𝑑𝑑 𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚𝑘𝑘𝑟𝑟

𝑇𝑇𝑟𝑟𝑑𝑑𝑎𝑎𝑟𝑟 𝑟𝑟𝑟𝑟𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑟𝑟𝑓𝑓 𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚𝑘𝑘𝑟𝑟
∗ 100 (8) 

3.3. BiGRU based Smooth and Structured Block Classification 

GRU is extremely same as LSTM, however, it implements gate process for 
tracking the state of order before utilizing a distinct storing unit that creates the 
infrastructure easier [20]. It comprises 2 types of gates such as reset gate 𝑟𝑟𝑟𝑟 
and update gate 𝑧𝑧𝑟𝑟. It is control that data was upgraded to state together. 𝑟𝑟𝑟𝑟 
control the influence of past state to candidate state ℎ�, and lesser their value is 
further it can be ignored. At time 𝑓𝑓, 𝑟𝑟𝑡𝑡 was upgraded as: 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑈𝑈𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑟𝑟ℎ𝑡𝑡−1 + 𝑛𝑛𝑟𝑟) (9) 

whereas 𝜎𝜎 refers the sigmoid function, 𝑥𝑥𝑙𝑙 and ℎ𝑡𝑡−1 correspondingly 
implies the input and preceding hidden state. 𝑧𝑧𝑡𝑡 has been utilized for controlling 
several past data was recollected and several novel data is occupied. The 
superior the value is, the further status data at the preceding moment was taken 
in. 𝑧𝑧𝑡𝑡 was upgraded as: 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑈𝑈𝑍𝑍𝑥𝑥𝑡𝑡 + 1𝑊𝑊𝑍𝑍ℎ𝑡𝑡−1 + 𝑛𝑛𝑧𝑧) (10) 

The state of GRU at time 𝑑𝑑 was calculated as the subsequent formula: 

ℎ𝑟𝑟 = (1 − 𝑧𝑧𝑟𝑟) ⊙ℎ� + 𝑧𝑧𝑟𝑟 ⊙ ℎ𝑡𝑡−1 (11) 

whereas ⊙ implies the vector element multiplication and candidate state 
ℎ� has calculated as: 

ℎ� = tanh�𝑈𝑈ℎ𝑥𝑥𝑓𝑓 +
1

𝑉𝑉ℎ�ℎ𝑓𝑓−1 ⊙ 𝑟𝑟𝑡𝑡�
+ 𝑛𝑛ℎ� (12) 

and 𝑈𝑈𝑟𝑟 ,𝑊𝑊𝑟𝑟 ,𝑈𝑈𝑍𝑍,𝑊𝑊𝑍𝑍,𝑈𝑈ℎ and 𝑊𝑊ℎ in (9) (10) (12) are learnable weighted, 𝑛𝑛ℎ, 
𝑛𝑛𝑟𝑟 , and 𝑛𝑛𝑍𝑍 are bias terms. But the conventional RNNs only utilize the previous 
data, the bidirectional RNN (BRNN) is procedure information in both directions. 
The outcome 𝑦𝑦 of BRNN is attained by calculating the forward hidden order ℎ𝑟𝑟

→
 

and backward order ℎ𝑡𝑡
←

 from iterative approach utilizing the subsequent 
formulas: 

ℎ�⃗ 𝑡𝑡 = 𝛷𝛷 �𝑊𝑊𝑊𝑊𝜒𝜒ℎ��⃗ 𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ��⃗ ℎ��⃗ ℎ�⃗ 𝑡𝑡−1 + 𝑛𝑛ℎ��⃗ �  (13) 
ℎ𝑡𝑡�⃖�� = 𝛷𝛷�𝑊𝑊𝑥𝑥ℎ⃖��𝑥𝑥𝑡𝑡𝑥𝑥ℎ + 𝑊𝑊ℎ⃖��ℎ⃖��ℎ⃖�𝑡𝑡−1 + 𝑛𝑛ℎ⃖��� (14) 

𝑦𝑦𝑡𝑡 = 𝑊𝑊ℎ��⃗ 𝑦𝑦ℎ�⃗ 𝑡𝑡 + 𝑊𝑊ℎ⃖��𝑦𝑦ℎ⃖�𝑡𝑡−1 + 𝑛𝑛𝑦𝑦 (15) 
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Relating BRNN with GRU provides BGRU that is utilized for accessing 
the long‐term full sequential data of provided order from both directions. While 
a fault analysis problem is usually noticed as a classifier problem, cross-entropy 
was implemented as the loss function. While the instance was weighted, the 
weighted cross-entropy was offered as: 

𝑓𝑓(𝜃𝜃) = −�𝑤𝑤𝑛𝑛

𝑁𝑁

𝑛𝑛=1

�𝑦𝑦𝑖𝑖

𝑀𝑀

𝑖𝑖=1

1𝑟𝑟𝑜𝑜(𝑦𝑦�𝑖𝑖) (16) 

whereas 𝜃𝜃 signifies the NN parameters, 𝑁𝑁 signifies the amount of 
instances, 𝑀𝑀 stands for the count of faults, 𝑦𝑦𝑖𝑖 indicates the true label and 𝑦𝑦�𝑖𝑖 
implies the predictive probability. At the time of training the BiGRU method, it 
maintains the target as smoothing or infrastructure depending on the standard 
deviation (SD) of certain blocks. If the SD develops lesser than 5, the target 
was preserved as smooth one. Else, it can be assumed that infrastructure area 
is offered under. 

𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑 = �𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑 𝑤𝑤𝑓𝑓 𝑆𝑆𝑁𝑁 > 5
𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑑𝑑ℎ 𝑟𝑟𝑑𝑑ℎ𝑑𝑑𝑟𝑟𝑤𝑤𝑤𝑤𝑟𝑟𝑑𝑑

 (17) 

4. PERFORMANCE VALIDATION 

In this section studies the performance of the SSODLE-AIA algorithm 
employing MATLAB tool against identified dataset [22]. A few sample 
sequences are illustrated in Fig. 3. 

 

Figure 3. Sample intracranial aneurysms images 

Table 1 and Fig. 4 provide a comparative edge similarity (ESIM) outcome 
of the SSODLE-AIA model with existing models. The experimental results 
indicated that the SSODLE-AIA model has gained effectual performance with 
maximum values of ESIM.  

For instance, in image 1, the SSODLE-AIA model has offered increased 
ESIM of 112 whereas the GWO, CSA, MVO, CS-MVO, and VIA-BASDBN 
models have accomplished reduced ESIM of 101, 102, 103, 106, and 108 
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respectively. In addition, in image 3, the SSODLE-AIA approach has accessible 
improved ESIM of 70 whereas the GWO, CSA, MVO, CS-MVO, and VIA-
BASDBN systems have accomplished lower ESIM of 52, 56, 58, 61, and 65 
correspondingly. 

Moreover, in image 4, the SSODLE-AIA algorithm has offered maximal 
ESIM of 118 whereas the GWO, CSA, MVO, CS-MVO, and VIA-BASDBN 
models have accomplished minimal ESIM of 100, 101, 102, 105, and 110 
correspondingly.  

Table 1 ESIM analysis of SSODLE-AIA algorithm with existing approaches under four test 
images 

EDGE SIMILARITY 
DATASE
T 

GWO 
MODE
L 

CSA 
MODEL 

MVO 
MODEL 

CS-MVO 
MODEL 

VIA-
BASDBN 

SSODLE-
AIA 

Image 1 101 102 103 106 108 112 
Image 2 125 130 133 135 138 140 
Image 3 52 56 58 61 65 70 
Image 4 100 101 102 105 110 118 

 
Figure 4. ESIM analysis of SSODLE-AIA technique under four test images 

A comparative MSE inspection of the SSODLE-AIA model with existing 
models under four test images is shown in Table 2 and Fig. 5. The simulation 
outcomes reported that the SSODLE-AIA model has revealed effectual 
outcomes with least values of MSE. For instance, in image 1, the SSODLE-AIA 
model has gained least MSE of 32.51 whereas the GWO, CSA, MVO, CS-MVO, 
and VIA-BASDBN models have resulted in increased MSE of 64.43, 64.24, 
59.04, 58.85, and 57.35 respectively.  

Also, in image 3, the SSODLE-AIA system has attained minimal MSE of 
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18.67 whereas the GWO, CSA, MVO, CS-MVO, and VIA-BASDBN approaches 
have resulted in enhanced MSE of 38.45, 37.10, 29.02, 26.71, and 22.84 
respectively. Then, in image 4, the SSODLE-AIA approach has reached lower 
MSE of 8.14 whereas the GWO, CSA, MVO, CS-MVO, and VIA-BASDBN 
approaches have resulted in superior MSE of 12.86, 12.66, 13.63, 12.28, and 
10.22 correspondingly.  

Table 2 MSE analysis of SSODLE-AIA algorithm with existing approaches under four test 
images 

MEAN SQUARED ERROR 

DATASE
T 

GWO 
MODE
L 

CSA 
MODEL 

MVO 
MODEL 

CS-MVO 
MODEL 

VIA-
BASDBN 

SSODLE-
AIA 

Image 1 64.43 64.24 59.04 58.85 57.35 32.51 
Image 2 54.81 56.92 53.46 52.11 49.12 45.31 
Image 3 38.45 37.10 29.02 26.71 22.84 18.67 
Image 4 12.86 12.66 13.63 12.28 10.22 8.14 

 
Figure 5. MSE analysis of SSODLE-AIA algorithm 

A comparative RMSE examination of the SSODLE-AIA approach with 
existing algorithms under four test images is exposed in Table 3 and Fig. 6. The 
simulation outcomes reported that the SSODLE-AIA model has shown effectual 
outcomes with least values of RMSE. For instance, in image 1, the SSODLE-
AIA system has gained least RMSE of 5.70 whereas the GWO, CSA, MVO, 
CS-MVO, and VIA-BASDBN models have resulted in increased RMSE of 8.03, 
8.01, 7.68, 7.67, and 7.57 correspondingly.  

Likewise, in image 3, the SSODLE-AIA algorithm has gained least 
RMSE of 4.32 whereas the GWO, CSA, MVO, CS-MVO, and VIA-BASDBN 
systems have resulted in enhanced RMSE of 6.20, 6.09, 5.39, 5.17, and 4.78 
correspondingly. Eventually, in image 4, the SSODLE-AIA system has gained 
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least RMSE of 2.85 whereas the GWO, CSA, MVO, CS-MVO, and VIA-
BASDBN methodologies have resulted in maximal RMSE of 3.59, 3.56, 3.69, 
3.50, and 3.20 correspondingly.  

 
Figure 6. RMSE analysis of SSODLE-AIA technique under four test images 

Table 3 RMSE analysis of SSODLE-AIA algorithm with existing approaches 

ROOT MEAN SQUARE ERROR 
DATASE
T 

GWO 
MODE
L 

CSA 
MODEL 

MVO 
MODEL 

CS-MVO 
MODEL 

VIA-
BASDBN 

SSODLE-
AIA 

Image 1 8.03 8.01 7.68 7.67 7.57 5.70 
Image 2 7.40 7.54 7.31 7.22 7.01 6.73 
Image 3 6.20 6.09 5.39 5.17 4.78 4.32 
Image 4 3.59 3.56 3.69 3.50 3.20 2.85 

Table 4 and Fig. 7 illustrate a comparative PSNR outcome of the 
SSODLE-AIA approach with existing models. The experimental results 
indicated that the SSODLE-AIA system has gained effectual performance with 
maximal values of PSNR.  

For instance, on image 1, the SSODLE-AIA system has obtainable 
higher PSNR of 33.01dB whereas the GWO, CSA, MVO, CS-MVO, and VIA-
BASDBN algorithms have accomplished reduced PSNR of 30.04dB, 30.05dB, 
30.42dB, 30.43dB, and 30.55dB correspondingly. Additionally, in image 3, the 
SSODLE-AIA model has offered maximal PSNR of 35.42dB whereas the GWO, 
CSA, MVO, CS-MVO, and VIA-BASDBN techniques have accomplished 
reduced PSNR of 32.28dB, 32.44dB, 33.50dB, 33.86dB, and 34.54dB 
correspondingly. At last, on image 4, the SSODLE-AIA methodology has 
accessible improved PSNR of 39.02dB whereas the GWO, CSA, MVO, CS-
MVO, and VIA-BASDBN algorithms have accomplished reduced PSNR of 
37.04dB, 37.11dB, 36.79dB, 37.24dB, and 38.04dB correspondingly.  
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Table 4 PSNR analysis of SSODLE-AIA technique with existing approaches 

PEAK SIGNAL NOISE RATIO (DB) 
DATASE
T 

GWO 
MODE
L 

CSA 
MODEL 

MVO 
MODEL 

CS-MVO 
MODEL 

VIA-
BASDBN 

SSODLE-
AIA 

Image 1 30.04 30.05 30.42 30.43 30.55 33.01 
Image 2 30.74 30.58 30.85 30.96 31.22 31.57 
Image 3 32.28 32.44 33.50 33.86 34.54 35.42 
Image 4 37.04 37.11 36.79 37.24 38.04 39.02 

 
Figure 7. PSNR analysis of SSODLE-AIA technique 

Table 5 and Fig. 8 demonstrate a comparative SNR outcome of the 
SSODLE-AIA system with existing models. The experimental results indicated 
that the SSODLE-AIA approach has gained effectual performance with 
maximal values of SNR. For instance, in image 1, the SSODLE-AIA model has 
offered increased SNR of 18dB whereas the GWO, CSA, MVO, CS-MVO, and 
VIA-BASDBN models have accomplished reduced SNR of 13dB, 13dB, 15dB, 
15dB, and 15dB respectively. Similarly, in image 3, the SSODLE-AIA algorithm 
has offered increased SNR of 17dB whereas the GWO, CSA, MVO, CS-MVO, 
and VIA-BASDBN methodologies have accomplished lesser SNR of 14dB, 
14dB, 15dB, 16dB, and 16dB correspondingly. Lastly, in image 4, the SSODLE-
AIA approach has obtainable increased SNR of 17dB whereas the GWO, CSA, 
MVO, CS-MVO, and VIA-BASDBN models have accomplished reduced SNR 
of 14dB, 14dB, 14dB, 14dB, and 15dB correspondingly.  

Table 5 SNR analysis of SSODLE-AIA technique with existing approaches 

SIGNAL NOISE RATIO (DB) 
DATASET GWO 

MODEL CSA MODEL MVO MODEL CS- 
MVO MODEL VIA-BASDBN SSODLE- 

AIA 
Image 1 13.00 13.00 15.00 15.00 15.00 18.00 
Image 2 13.00 13.00 13.00 13.00 14.00 17.00 
Image 3 14.00 14.00 15.00 16.00 16.00 17.00 
Image 4 14.00 14.00 14.00 14.00 15.00 17.00 
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Figure 8. SNR analysis of SSODLE-AIA technique 

From these results and discussion, it is obvious that the SSODLE-AIA 
model has showcased maximal intracranial aneurysms detection performance 
over other models.  

5. CONCLUSION 

In conclusion, the fusion of shark smell optimization and deep learning for 
intracranial aneurysm detection represents a pioneering approach tailored for 
divers and swimmers. This innovative model holds the potential to significantly 
enhance early detection capabilities in challenging underwater environments, 
addressing a critical health concern in these unique settings. The convergence 
of nature-inspired sensory acuity and advanced artificial intelligence 
showcases the potential for transformative advancements in medical 
diagnostics, opening up new avenues for interdisciplinary collaboration and 
exploration beneath the waves. 

REFERENCES 

Agid, R., Andersson, T., Almqvist, H., Willinsky, R., Lee, S.-K., Farb, R., & 
Söderman, M. (2010). Negative CT angiography findings in patients with 
spontaneous subarachnoid hemorrhage: when is digital subtraction 
angiography still needed? American Journal of Neuroradiology, 31(4), 
696-705.  

Callagher, L. (2021). Bioentrepreneurship education: where have we been and 
where to next? Journal of Commercial Biotechnology, 26(3).  

Connolly Jr, E. S., Rabinstein, A. A., Carhuapoma, J. R., Derdeyn, C. P., Dion, 
J., Higashida, R. T., . . . Ogilvy, C. S. (2012). Guidelines for the 
management of aneurysmal subarachnoid hemorrhage: a guideline for 
healthcare professionals from the American Heart Association/American 
Stroke Association. Stroke, 43(6), 1711-1737.  



Rev.int.med.cienc.act.fís.deporte - vol. 23 - número 92 - ISSN: 1577-0354 

409 

Hemphill III, J. C., Greenberg, S. M., Anderson, C. S., Becker, K., Bendok, B. 
R., Cushman, M., . . . Mitchell, P. H. (2015). Guidelines for the 
management of spontaneous intracerebral hemorrhage: a guideline for 
healthcare professionals from the American Heart Association/American 
Stroke Association. Stroke, 46(7), 2032-2060.  

Ivantsits, M., Kuhnigk, J.-M., Huellebrand, M., Kuehne, T., & Hennemuth, A. 
(2021). Deep Learning-Based 3D U-Net Cerebral Aneurysm Detection. 
Paper presented at the Cerebral Aneurysm Detection and Analysis: First 
Challenge, CADA 2020, Held in Conjunction with MICCAI 2020, Lima, 
Peru, October 8, 2020, Proceedings 1. 

Joo, B., Ahn, S. S., Yoon, P. H., Bae, S., Sohn, B., Lee, Y. E., . . . Lee, S.-K. 
(2020). A deep learning algorithm may automate intracranial aneurysm 
detection on MR angiography with high diagnostic performance. 
European Radiology, 30, 5785-5793.  

Kakeda, S., Korogi, Y., Arimura, H., Hirai, T., Katsuragawa, S., Aoki, T., & Doi, 
K. (2008). Diagnostic accuracy and reading time to detect intracranial 
aneurysms on MR angiography using a computer-aided diagnosis 
system. American Journal of Roentgenology, 190(2), 459-465.  

Korogi, Y., Takahashi, M., Mabuchi, N., Nakagawa, T., Fujiwara, S., Horikawa, 
Y., . . . Shiokawa, Y. (1996). Intracranial aneurysms: diagnostic accuracy 
of MR angiography with evaluation of maximum intensity projection and 
source images. Radiology, 199(1), 199-207.  

McDonald, R. J., Schwartz, K. M., Eckel, L. J., Diehn, F. E., Hunt, C. H., 
Bartholmai, B. J., . . . Kallmes, D. F. (2015). The effects of changes in 
utilization and technological advancements of cross-sectional imaging 
on radiologist workload. Academic Radiology, 22(9), 1191-1198.  

Mensah, E., Pringle, C., Roberts, G., Gurusinghe, N., Golash, A., & Alalade, A. 
F. (2022). Deep Learning in the Management of Intracranial Aneurysms 
and Cerebrovascular Diseases: A Review of the Current Literature. 
World Neurosurgery.  

Miki, S., Hayashi, N., Masutani, Y., Nomura, Y., Yoshikawa, T., Hanaoka, S., . . . 
Ohtomo, K. (2016). Computer-assisted detection of cerebral aneurysms 
in MR angiography in a routine image-reading environment: effects on 
diagnosis by radiologists. American Journal of Neuroradiology, 37(6), 
1038-1043.  

NARANJI, M. K., & KANDUL, S. (2017). Australian sawcheek scorpionfish, 
Brachypterois curvispina Matsunuma, Sakurai & Motomura 2013 
(Scorpaeniformes: Scorpaenidae) new record from Indian waters. 
FishTaxa, 2(2), 71-75.  

Ois, A., Vivas, E., Figueras-Aguirre, G., Guimaraens, L., Cuadrado-Godia, E., 
Avellaneda, C., . . . Villalba, G. (2019). Misdiagnosis worsens prognosis 
in subarachnoid hemorrhage with good Hunt and Hess score. Stroke, 
50(11), 3072-3076.  

Park, A., Chute, C., Rajpurkar, P., Lou, J., Ball, R. L., Shpanskaya, K., . . . Tseng, 
J. (2019). Deep learning–assisted diagnosis of cerebral aneurysms 
using the HeadXNet model. JAMA network open, 2(6), e195600-
e195600.  

Rincon, F., Rossenwasser, R. H., & Dumont, A. (2013). The epidemiology of 
admissions of nontraumatic subarachnoid hemorrhage in the United 
States. Neurosurgery, 73(2), 217-223.  



Rev.int.med.cienc.act.fís.deporte - vol. 23 - número 92 - ISSN: 1577-0354 

410 

Shi, Z., Miao, C., Schoepf, U. J., Savage, R. H., Dargis, D. M., Pan, C., . . . 
Zhang, X. (2020). A clinically applicable deep-learning model for 
detecting intracranial aneurysm in computed tomography angiography 
images. Nature communications, 11(1), 6090.  

Sichtermann, T., Faron, A., Sijben, R., Teichert, N., Freiherr, J., & Wiesmann, 
M. (2019). Deep learning–based detection of intracranial aneurysms in 
3D TOF-MRA. American Journal of Neuroradiology, 40(1), 25-32.  

Sohn, B., Park, K.-Y., Choi, J., Koo, J., Han, K., Joo, B., . . . Lee, S.-K. (2021). 
Deep Learning–Based Software Improves Clinicians' Detection 
Sensitivity of Aneurysms on Brain TOF-MRA. American Journal of 
Neuroradiology, 42(10), 1769-1775.  

Stember, J. N., Chang, P., Stember, D. M., Liu, M., Grinband, J., Filippi, C. 
G., . . . Jambawalikar, S. (2019). Convolutional neural networks for the 
detection and measurement of cerebral aneurysms on magnetic 
resonance angiography. Journal of digital imaging, 32, 808-815.  

Taufique, Z., May, T., Meyers, E., Falo, C., Mayer, S. A., Agarwal, S., . . . 
Schmidt, J. M. (2016). Predictors of poor quality of life 1 year after 
subarachnoid hemorrhage. Neurosurgery, 78(2), 256-264.  

Ueda, D., Yamamoto, A., Nishimori, M., Shimono, T., Doishita, S., Shimazaki, 
A., . . . Shimahara, Y. (2019). Deep learning for MR angiography: 
automated detection of cerebral aneurysms. Radiology, 290(1), 187-
194.  

Van Gijn, J., Kerr, R. S., & Rinkel, G. J. (2007). Subarachnoid haemorrhage. 
The Lancet, 369(9558), 306-318.  

Vlak, M. H., Algra, A., Brandenburg, R., & Rinkel, G. J. (2011). Prevalence of 
unruptured intracranial aneurysms, with emphasis on sex, age, 
comorbidity, country, and time period: a systematic review and meta-
analysis. The Lancet Neurology, 10(7), 626-636.  

 
 
 


