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ABSTRACT 

In modern soccer, player health and injuries are critical to team competitiveness 

and sustainability. Traditional injury risk assessment methods have limitations, 

but with the development of sensor technology and machine learning 

algorithms, new possibilities for real-time injury risk assessment of players are 

provided. The application of IoT and AI technologies is driving the development 

of intelligence, and combining them to monitor the physiological state and 

athletic injurie load of players in real time with the help of wearable sensors can 

provide objective and accurate data support. Using machine learning 

algorithms, sensor data can be analyzed to build a prediction model for player 

injury risk. Individualized injury risk assessment for different players becomes 

possible. The soccer movement recognition and analysis combine sensor data 

to design a framework for soccer movement recognition and assessment, in 

order to achieve real-time monitoring and risk assessment of players during 

matches and training, and to help minimize the risk of player injuries.  

KEYWORDS: Injury Risk Assessment; Sensors; Machine Learning; Early 

Warning 

1. INTRODUCTION 

In the modern game of soccer, the health and injuries of athletes are 

critical to the competitiveness and sustainability of teams. Soccer being a high-

intensity sport, soccer players are at risk of injuries that may have long-term 
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effects on their careers and lives. However, traditional injury risk assessment 

methods are often subjective and limited based on experience and apparent 

symptoms. With the development of sensor technology and machine learning 

algorithms, new possibilities for real-time injury risk assessment and early 

warning for athletes are provided. With the development of the new generation 

of information technology, the application of IoT and AI technology is becoming 

more and more widespread (Chen, Han, et al., 2023; Chen, Li, et al., 2023; Li 

& Cao, 2021). Its application field involves industry, agriculture, transportation 

and other infrastructure fields, effectively promoting the intelligent development 

of various industries (Ouyang et al., 2024). In contrast, the current application 

of IoT technology in the direction of sports competition is still in the primary 

exploration stage in general. Combining IoT and artificial intelligence 

technology to realize human-machine and human-network system-human 

interaction by means of inertial sensor-based motion capture has become an 

international cutting-edge research hotspot involving a high degree of 

multidisciplinary crossover and knowledge integration. Through wearable 

sensors (e.g., accelerometers, gyroscopes, heart rate monitors, etc.), athletes' 

physiological state, exercise trajectory, and exercise load can be monitored in 

real time, thus providing more objective and accurate data support. With the 

help of machine learning algorithms, a large amount of collected sensor data 

can be analyzed and pattern recognition can be performed to establish a 

prediction model of the athlete's injury risk. This enables individualized injury 

risk assessment for different athletes. Human actions are described using 

feature vectors with time series, and through the transfer of action feature 

sequences, time series-based algorithms can recognize and analyze daily 

human actions. Hidden Markov Model (HMM) was used by Zappi et al. for 

dynamic sensor selection system to realize the recognition of operational 

actions of assembly workers (Zappi et al., 2008). However, the recognition 

performance of HMM-based classifiers is largely limited by the assumptions of 

no posteriority and chi-squaredness, and the Conditional Random Field (CRF) 

model was used for action recognition of more complex sequences. Belgacem 

et al. used CRF to recognize human action sequences and compared it with 

HMM and showed that CRF outperformed HMM (Belgacem et al., 2017). Due 

to the context-dependent pattern analysis, the recognition algorithm based on 

time series often has a better classification effect for recognizing complex 

human actions, but the algorithm model is complex, and the model computing 

cost is high and difficult to realize real-time recognition when the data volume 

is large. Static recognition algorithms based on a single example mainly include 

threshold-based recognition algorithms and recognition algorithms based on 

artificial intelligence: Hssina et al. used a decision tree algorithm to complete 

the distinction of common actions (Hssina et al., 2014); K-Nearest Neighbour 

(KNN) algorithm was used by Bansal et al. for online recognition analysis of 

human actions (Bansal et al., 2022). SVM is also heavily utilized in related 

research. In addition to these common algorithms, decision tables, dynamic 
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time regularization, and extreme learning machines are also common 

algorithms to improve the accuracy of the algorithm. It can be seen that static 

learning algorithms based on a single example have received the attention of a 

large number of researchers and achieved good classification results. There is 

a significant demand and opportunity for the application and development of 

combining IoT and AI technology in the teaching, training, and competitions of 

soccer. The recognition and analysis of soccer sports movement primarily 

focuses on the calves and ankles of athletes. This involves using wearable 

devices with built-in inertial sensors that are attached to the ankle. Machine 

learning algorithms are then employed to identify the specific movements and 

estimate their intensity. In general, inertial sensors have limited sensitivity when 

it comes to capturing data related to lower body movements in sports, 

particularly in soccer. This is due to the complexity of the movements involved 

and the individual differences among athletes. Additionally, existing algorithmic 

models for recognizing human activity in research are not easily applicable to 

recognizing soccer movements directly. Traditional soccer teaching and training 

techniques have limited utilization of wearable sensing devices for collecting 

and analyzing real-time data. Additionally, there is a deficiency in capturing 

human movement and recognizing gestures based on sports science ideas. 

The existing model lacks the capability to thoroughly examine the intricate and 

noisy stream of action data. In this paper, the method of soccer action data 

analysis based on sensor data is investigated, and based on the shortcomings 

of the existing related research and the needs of practical application scenarios, 

a framework for soccer action recognition and assessment is designed, which 

uses wearable devices to collect soccer action data and constructs a machine 

learning algorithm model to recognize, assess, and analyze the intensity of the 

movement of soccer action. In order to achieve real-time monitoring and risk 

assessment of athletes during games and training, and to help coaches and 

medical teams make timely interventions to minimize the risk of injuries to 

athletes and improve their health and competitive performance. 

2. System Design and Data Acquisition 

Wearable sensors have found extensive use in sports recognition, 

however, the current methods for applying them are not suitable for recognizing 

soccer movements (Nunes Rodrigues et al., 2020). Additionally, the limited 

number of coaches available make it challenging to accurately assess the 

individual performance of each soccer player using precise data quantification. 

Initially, we present an IoT-based system for recognizing soccer movement. 

This system is capable of visually displaying the specific type of movement and 

the level of expertise in performing the movement on mobile devices. This 

section provides comprehensive information on the hardware design, interface 

software, and data gathering procedure, including particular details for each 

phase. Figure 1 depicts the structure of the system, comprising a wireless 

wearable device, a mobile device, and a cloud-based data processing platform. 
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The motion sensor is attached to the soccer player's right ankle in the IoT 

system. The motion data is transferred wirelessly via Bluetooth technology to 

the cloud platform for additional analysis and computation (Piñeiro-Cossio et 

al., 2021). 

 

Figure 1: Flowchart of the platform. 

The low-power Bluetooth device transmits exercise data collected by the 

wearable device to the mobile device through the IoT system. Once the mobile 

device receives the exercise data, it uses cloud computing technology to send 

the raw data to the remote service platform for data collection and processing. 

The platform allows the user to view the analysis results of their exercise 

performance. 

2.1 Hardware and Software System Design 

The Soccer Motion Recognition and Evaluation System begins by 

collecting data using a wireless wearable device. Figure 2 illustrates the 

components of the device. 

 

Figure 2: Architecture and Use of Wireless Wearable Devices 

The wireless wearable device consists of key components, such as a 

MEMS motion sensor chip that has a three-axis gyroscope and accelerometer, 

a microprocessor unit with Bluetooth connectivity, a lithium battery, and a device 
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switch. MEMS, or Microelectromechanical Systems, employ a three-axis 

gyroscope and accelerometer to gather motion data and convert the signals 

into unprocessed information (Ahmed & Al-Gayem, 2023). This gadget 

incorporates the BMI160 sensor produced by BOSCH. The DA14583 

microprocessor, manufactured in Reading, UK, serves as a baseband radio 

processor equipped with a fully integrated radio transceiver that is specifically 

tailored for low-power Bluetooth. The BMI160 sensor is a compact and energy-

efficient semiconductor that enables the measurement of 3D acceleration and 

angular velocity. This project involved the creation of a smartphone application 

that was designed to accept and present real-time data from the wearable 

device. The application comprises three functions: wireless networking, real-

time data collecting and presentation, and cloud synchronization of the data. 

The gathered data is synchronized, presented, and kept locally. Moreover, the 

cloud-based technique allows for the distant storing of data. After finishing the 

process of collecting data, users can retrieve the analysis findings on the client 

side. 

2.2 Data Acquisition 

Eleven male soccer players were enlisted, comprising of five pros and 

six amateurs. The professional soccer players showcased their skills in over 

twelve national matches at the CFA Youth Academy, whilst the non-professional 

soccer players were novices at the university. A portable wireless wearable 

device was affixed to the participants' right ankle to ensure the comprehensive 

recording of vital data on soccer motions during the execution of fundamental 

soccer actions. Every individual executed a total of 20 passes using the inside 

of their foot and 20 shoots using the arch of their foot. The experimenters 

replicated these moves in the identical posture and were obligated to execute 

both the passing and firing maneuvers with a specific level of velocity and 

precision. Otherwise, the maneuver was deemed invalid and excluded from the 

count. Figure 3 depicts the experimental scenario used to collect data. 

 

Figure 3: Data Acquisition Experiment Setup 

Figure 4 shows the six-axis synchronization raw data of a professional 
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athlete performing different soccer moves. 

 

 

Figure 4: Professional Athletes Data Graphic Column 

3. LSTM-based model for soccer action recognition and intensity analysis 

3.1 LSTM 

The Long Short-Term Memory (LSTM) model partially addresses the 

long-term dependency issue in recurrent neural network structures by 

incorporating gate control units and current connections within the neural units 

(Lindemann et al., 2021). In comparison to traditional recurrent neural networks, 

LSTM introduces input gates, forget gates, output gates, and internal memory 

units to each neuron, enabling selective retention and retrieval of historical 

information. LSTM constitutes a specialized network structure with three "gate" 

components, and its internal architecture is depicted in Figure5. 

 

Figure 5: Diagram of the internal structure of the LSTM 

The graphic represents the input gate, forgetting gate, and output gate 

as 𝑖, 𝑓, and 𝑜 accordingly. The cell state is denoted by 𝑐 and the output of 
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the implied state is denoted by ℎ. The activation functions used are σ and tanh. 

The input gate, denoted as 𝑖 , operates within the value range of (0, 1). Its 

primary role is to assess the significance of the present input information prior 

to establishing a fresh memory. Subsequently, it regulates the magnitude of the 

newly produced component 𝐶′𝑡  within the cell state 𝐶𝑡 . The input gate 

structure is depicted by equations (1) and (2): 

𝑖𝑡 = 𝜎(𝑤𝑡 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑡)                        (1) 

𝐶′𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                     (2) 

The purpose of the forgetting gate is to assess the relevance of the 

previous memory cell in the calculation of the current memory cell. It filters 

information and regulates the extent to which the input and output of the 

previous hidden layer are forgotten. Additionally, it controls the amount of 

information from the previous moment's cell state that can be transferred to the 

current moment's cell state. The objective is to regulate the retention or 

omission of the hidden cell state from the preceding layer, using a specific 

probability within the range of (0,1). The equation below depicts the 

construction of the forgetting gate: 

𝑓𝑡 = 𝜎(𝑤𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                       (3) 

The current cell state in each LSTM cell is updated using the output 

values of the forget gate 𝑓 and the input gate 𝑖. As shown in the figure, the 

new cell state 𝐶𝑡  is composed of two components. The first component is 

determined by the previous cell state 𝐶𝑡−1 and the forget gate 𝑓 with a size of 

(𝑓𝑡 × 𝐶𝑡−1) . The second component is governed by the current cell state 

information 𝐶′𝑡  and the input gate 𝑖  with size (𝑖𝑡 × 𝐶′𝑡) . The procedure for 

modifying the cellular state is illustrated by the subsequent equation: 

𝐶𝑡 = 𝑓𝑡
𝑖𝐶𝑡−1 + 𝑖𝑡𝐶′𝑡                          (4) 

The output gate serves to separate the final memory from the hidden 

state and regulate the information that should be produced by the present 

neuron, based on the updated cellular state. This ultimately determines the 

most concealed state's final output. The equation below illustrates the 

construction of the output gate: 

𝑜𝑡 = 𝜎(𝑤𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                     (5) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ( 𝐶𝑡)                       (6) 

The LSTM network structure is characterized by each gate (input gate, 

oblivion gate, output gate) having its own set of parameters. This is a crucial 

aspect of the LSTM network. Additionally, the formula for each neuron's 

structure, denoted as ℎ, is composed of the current input 𝑥 and the output of 
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the previous hidden neuron. The value of σ is typically selected as the activation 

function, primarily serving as a gate, due to the fact that the output of the 

sigmoid function ranges between 0 and 1. This aligns with the conceptual 

interpretation of "off" and "on" in a physical sense. The tanh function serves as 

an activation function for the memory cell 𝑐 mostly due to its output range of (-

1,1). The primary rationale for selecting the hyperbolic tangent tanh function as 

the activation function for the memory unit is due to its faster convergence time 

compared to the sigmoid function, particularly when dealing with scenarios that 

involve a normal distribution centered around 0. When the input data lacks 

useful information, the forget gate 𝑓 has a value near to 1, while the input gate 

𝑖 has a value close to 0. This ensures that valuable information from the past 

is retained. When the input sequence contains crucial information, the forget 

gate 𝑓 will have a value that is nearly equivalent to 0, while the input gate will 

have a value that is nearly equivalent to 1. At this juncture, the LSTM model 

disregards previous memories and selectively retains crucial information in the 

present time. The three gate structures of the LSTM network, along with the 

memory unit, collectively regulate the output of the network. This enables the 

network to successfully manage the alteration of sequence information. 

3.2 LSTM-based information processing model for motion recognition 

Neural Network Layer Design A typical neural network contains an input 

layer, a hidden layer and an output layer. The input layer acts as a buffer 

memory throughout the network and is used to add data to the network. The 

number of layers and settings of the hidden layer are key to the design of a 

neural network, according to the Universal Approximation Theorem, when 

having a layer of linear output layer and a nonlinear excitation function, it can 

infinitely approximate the function that needs to be modeled, given enough 

neural network nodes and suitable parameters (Hings et al., 2020).  

Although this theorem does not provide a theoretical reference for the 

specific number of nodes in a neural network, we can at least narrow the focus 

of our research to the number of neural network nodes. It is generally accepted 

that a moderate increase in the number of network nodes can improve 

prediction accuracy, but too many network nodes can also increase the overall 

complexity of the network, leading to spikes in computation and training time 

and overfitting problems (greater accuracy on the training set than on the test 

set). At present, there is no clear theory of the number of neural network nodes, 

or rely on experience in practice, but the number of nodes cannot be greater 

than the number of samples. In multi-classification problems, the output layer 

often uses a softmax excitation function as the fully connected layer, and its 

output can be viewed as a probability distribution that sums to one. In order to 

avoid overfitting problem, dropout is used to disconnect neurons with random 

chance to enhance the overall robustness of the model, and the probability of 

disconnection p is usually set to 0.5 (Li, 2019). 
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3.2.1 Loss Function Design 

The loss function quantifies the discrepancy between the projected value 

of model for �̂� and the true value 𝑦. It is always greater than or equal to zero. 

The loss function is iteratively optimized using optimization techniques such as 

gradient descent, Newton's method, and others. If the value decreases, it 

indicates an increase in the model's fitting capability. There exist numerous 

varieties of loss functions, with the often-employed ones being: 

(1) The mean-square error (MSE) function is calculated by the formula.: 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                        (7) 

(2) The cross-entropy loss function, which measures the difference 

between two probability distributions. 𝑝 is the true probability distribution and 

𝑞 is the predicted probability distribution, and is calculated as follows. 

𝐻(𝑝, 𝑞) = ∑ 𝑝(𝑖) ∗ 𝑙𝑜𝑔
1

𝑞(𝑖)𝑖                    (8) 

When the sigmoid function is utilized as the activation function, the 

majority of values along the curve of the function have low gradients. Using the 

mean square error function as the loss function decreases the rate at which the 

weights are updated. Given that this research deals with an issue involving 

many classes and employs a recurrent neural network of the LSTM type, the 

soft max function will be used at the output of the network to transform it into 

probabilities. Using the cross-entropy loss function in this situation eliminates 

the necessity of the sigmoid derivative. Therefore, while selecting Categorical 

Cross-Entropy as the loss function is a more suitable choice. The function is 

described in a comprehensive manner below: 

𝐿𝑜𝑠𝑠𝑖 = −∑ 𝑡𝑖,𝑗 𝑙𝑜𝑔(𝑝𝑖,𝑗)𝑗                     (9) 

The formula uses the variables 𝑝 to represent the predicted value, 𝑡 to 

represent the actual classification, 𝑖 to indicate the location of the data, and 𝑗 

to represent the location of the classification in the prediction. 

4. Experiments 

4.1 Experimental Design 

A series of data gathering experiments were conducted to obtain 126 

sets of passes and 108 sets of shots on goal. The dataset was partitioned into 

training and test sets through random sampling, with 80% assigned to training 

and the remaining portion designated as test data. To validate the training 
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model, a batch size of 200 was utilized, and the model underwent 3500 

iterations. Additionally, the input data was standardized. The Keras library 

provides various optimization algorithms, including Stochastic Gradient 

Descent (SGD), RMSProp, and Adam optimizer. For this study, the Adam 

optimizer was chosen for model optimization in the tests. The F1 scores and 

mean accuracies (mAP) were employed to evaluate the performance of the 

movement classification subtask model. For each activity type, the quality of 

the movement intensity estimation sub-model was assessed using the mean 

absolute percentage error (MAPE). The occurrence of mild overfitting in the 

models can be attributed to the inherent characteristics of the approach 

employed and the scarcity of available data. Upon conducting the parametric 

grid search, the best model's final hyper parameters are determined as follows: 

a learning rate of 0.0015, weight decay of 0.0001, neural unit discard rate of 

0.5, batch size of 256, 3000 iterations, and a regularization constant of 0.00015. 

The most effective model configuration consists of a single-layer model with 32 

hidden units per LSTM layer. This choice is based on the observation that a 

lesser number of hidden units fails to adequately learn the feature information, 

while a greater number of hidden units only marginally improves the F1 score 

while considerably increasing computational costs. 

4.2 Experimental Results and Analysis 

The outcomes for the action recognition subtask in the multitask deep 

learning model are displayed in the columns on the far right of Table 1. The 

recognition job encounters difficulties due to the restricted sophistication of the 

two-layer LSTM with 16 neural units, leading to insufficient information 

acquisition. On the other hand, using a two-layer LSTM with 64 neural units 

results in unnecessary intricacy. The optimal model consists of a single-layer 

Long Short-Term Memory (LSTM) with 64 neural units, which achieves the 

maximum accuracy on both the training and test datasets. 

Table 1: Comparison of single-layer L1 and multi-layer L2 action recognition results 

MODEL 
F1-SCORE MAP 

Player1 Player2 All Data Training Set Test Set 

L1-16 0.7098 0.8709 0.7678 0.9174 0.9374 

L1-32 0.9446 0.9149 0.8075 0.9548 0.9440 

L1-64 0.7865 0.9304 0.8220 0.9980 0.9855 

L2-16 0.7364 0.7905 0.6925 0.8396 0.8826 

L2-32 0.7504 0.8502 0.7923 0.9068 0.9206 

L2-64 0.7827 0.9764 0.8095 0.9119 0.9000 

The experiments aimed to compare models with varying numbers of 

hidden units and layers, and to evaluate the impact of incorporating an extra 

fully linked layer prior to the output layer on the model's output. The outcomes 

are displayed in Table 2. It has been observed that incorporating an extra 
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completely linked layer leads to a decrease in the Mean Absolute Error (MAE) 

when considering the average of the cross-validation outcomes. Furthermore, 

it is evident that increasing the number of concealed units enhances the model's 

ability to accurately correlate the input wearable data with count estimations, 

hence boosting the precision of motion intensity estimation. 

Table 2: Comparison of single-layer L1 and multi-layer L2 motion intensity results 

MODEL FULLY CONNECTED LAYER OR NOT 
MAE 

Player1 Player2 All data 

L1-32 × 2.5941  1.5304  1.6843  

L1-32 √ 1.0629  1.6167  0.9553  

L1-64 × 1.0570  1.0670  0.8367  

L1-64 √ 0.7252  0.5882  0.5752  

L2-32 × 1.0824  0.5041  0.6088  

L2-32 √ 1.6107  0.6760  0.6218  

L2-64 × 0.7189  0.6686  0.5949  

L2-64 √ 0.5874  0.6152  0.5325  

The optimal approach for predicting motion intensity in the single-task 

model involves employing a two-layer LSTM network including 64 neural units, 

in addition to incorporating a fully connected layer with an additional 32 neural 

units. The experiment's results are located in the final row of the table. The 

incorporation of a dual-layer LSTM layer improves the extraction of significant 

features in the model for estimating motion intensity. Nevertheless, an LSTM 

network with only one layer, consisting of 64 neural units, and a fully linked layer, 

manages to achieve similar performance while having a lower level of 

complexity. Furthermore, the single-layer model exhibits the highest mean F1 

scores in the motion action categorization model. The average F1 score for the 

sub model specifically designed for the action recognition task was 82.20%. 

The effectiveness of the comprehensive multitasking approach is compared to 

the results of the single-tasking strategy. In order to assess the efficacy of the 

multitasking model, we conducted a comparison of its F1 scores and mAP 

measures with those of the single-tasking model. The results are displayed in 

Table 3. 

Table 3: Comparison of experimental results between single-task models and multi-task 

models 

MODEL ACCURACY F1-SCORE MAP MAE MAPE-% 

SINGLE-TASK LSTM-32 0.8362  0.8205  0.7629  0.9250  37.1060  

SINGLE-TASK LSTM-32 0.8700  0.8473  0.8036  0.5779  18.7988  

MULTI-TASK LSTM-32 0.8123  0.7928  0.7400  0.5935  16.6777  

MULTI-TASK LSTM-32 0.8605  0.8323  0.7910  0.6106  22.8650  

The top scores on all metrics were attained by the single-task, single-
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layer LSTM network with 64 neural units and no fully connected layer for the 

action recognition task. On the other hand, when it comes to estimating the 

intensity of motion, the LSTM model with a single job and a single layer, 

consisting of 64 neural units and a fully connected layer, produced the most 

accurate results with the lowest error values according to the Mean Absolute 

Error (MAE) metric. Nevertheless, employing a model size of 32 neural units 

resulted in the lowest error in the MAPE measure. This can be attributed to the 

model's diminished complexity and its ability to prevent overfitting, as opposed 

to the model with 64 neural network units. This reduction process eliminates 

data points that deviate significantly from the average, which in turn reduces 

the Mean Absolute Percentage Error (MAPE) and improves the accuracy of 

action classification. These findings indicate that using a multi-task model is 

more advantageous than using several single-task models for enhancing the 

performance of motion intensity estimate, but with a little decrease in action 

classification accuracy. To lessen the consequences of this compromise, one 

might employ methods like using moving average filters to reduce noise and 

smooth out data streams. While our model demonstrates strong performance 

on actual datasets, its effectiveness is somewhat restricted by limitations in data 

quantity. To mitigate the risk of overfitting, we employ feature augmentation and 

parameter tuning techniques during training. Additionally, we prioritize the 

ongoing acquisition of data to improve the accuracy of recognition. The models 

were assessed by comparing their performance in various datasets, including 

UCI-HAR, BaSA, and Stanford-ECM. This evaluation aimed to determine 

whether a multi-task model utilizing sensor data enhances the motion 

classification task. The results obtained for the model are summarized in Table 

4. 

Table 4: Experimental results of multi-task modeling based on UCI-HAR public dataset 

MODEL DATA TYPE CLSF. (MAP) REG.(MAE) 

STM-UCI a 0.8976  \ 

STM-UCI a,g 0.8989  \ 

LSTM BM-UCI a,g 0.8881  \ 

LSTM MTM-UCI a,g 0.9299  \ 

STM-BASA a,g 0.7326  0.2247  

LSTM BM-BASA a,g 0.8101  0.7867  

LSTM MTM-BASA a,g 0.8266  0.7053  

STM-ECM a 0.3425  0.2334  

LSTM BM-ECM a 0.5233  0.7655  

LSTM MTM-ECM a 0.7884  0.7039  

a：acceleration; g：gyro; BM: Base Model; STM: Single-Task Model; MTM: Multi-Task Model 

The UCI-HAR dataset initially included the measurement of total 

acceleration as a data feature. The classification accuracies achieved by the 
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single-task model employing this dataset demonstrated satisfactory 

performance, however inferior to the outcomes reported in the current research 

on the suggested model. Consequently, the inclusion of gyroscope data was 

implemented to augment the information included in the feature data and retrain 

the model. However, the model did not yield superior results when using 

gyroscope data compared to using solely acceleration data. The multitasking 

model's performance was diminished in comparison to the single-task model 

due to the amalgamation of two autonomous jobs into one, and the utilization 

of direct estimation of acceleration counts and gyroscope data as input. 

Nevertheless, the performance of the action categorization subtask model in 

the multitask model shown a substantial improvement, surpassing the 

recognition rate achieved by the single-task model. Nevertheless, within our 

dataset, the inclusion of gyroscope data as input in conjunction with 

acceleration data enhances the precision of action classification for all models. 

The multitasking model was subsequently trained using the BaSA dataset to 

assess its performance in handling multi-sensor data challenges. The data was 

reduced in frequency to 50Hz in order to train the model. The findings indicate 

that the model has high precision in action categorization, but its accuracy in 

motion intensity estimation is comparatively lower. This discrepancy arises due 

to the multitasking model's inclination to prioritize enhancing classification 

accuracy, which comes at the cost of motion intensity estimation. Ultimately, the 

multitask model underwent evaluation on a specific portion of the Stanford-ECM 

dataset. The original dataset named Talking was used to merge the data 

characteristics and identify six groups. Transforming the activities of sitting and 

completing tasks to the activity of sitting and engaging in conversation. 

Combine the actions of standing and standing in line into the action of standing, 

which includes sitting, standing, walking, running, descending stairs, and 

ascending stairs. The sub-model achieved an outstanding result of 0.2247 MAE 

for the motion intensity estimate test. However, its performance for the action 

categorization challenge was not excellent in terms of mAP. The presence of 

an imbalanced distribution of classes in the Stanford-ECM6 dataset results in 

a significant bias in the model, but the variance remains low. 

5. Conclusion 

This study takes IoT technology as the background to construct a soccer 

movement recognition and evaluation method based on wireless wearable 

devices. Using the data collected by sensors in soccer games and training to 

recognize and evaluate athletes' movements, it can reflect the athletes' 

movement status in real time, and when the athletes experience movement 

deformation caused by fatigue or injury, it can prompt the athletes and coaches 

to make adjustments to the training content in a timely manner. The main 

conclusions of this paper are as follows: 

(1) The IoT-based wearable sensing technology is constructed to consist 
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of a wireless wearable device, a mobile device and a cloud-based data 

processing platform. The wearable device adopts the BMI160 sensor from 

BOSCH and the DA14583 microprocessor unit produced by the Reading 

Company in the U.K. The device realizes the real-time monitoring of the motion 

characteristic data of the ankle part of the soccer movement, and the device is 

compact and lightweight. (2) Based on the LSTM model, the soccer action 

recognition and intensity analysis model is constructed to process the sports 

data of soccer players. Through experimental verification, the model has 

excellent action recognition ability. 
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