Skip to content
International Journal of Medicine and Science of Physical Activity and Sport

International Journal of Medicine and Science of Physical Activity and Sport

REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FÍSICA Y EL DEPORTE

Menu
  • Home
  • Browse Issues
    • In Press
    • Current Issue
    • Past Issues
  • Information for Contributors
    • Subject Index
    • Subject Index – clasificación del consejo de europa
    • Subject Index – UNESCO Code
  • Login
  • Register
  • About
    • Editorial Staff
    • Indexation/Indexacion
    • INDICADORES DE CALIDAD / QUALITY
    • Contact us

Article View

MECHANISMS OF MYOCARDIAL HYPOXIA-INDUCED ENDOPLASMIC RETICULUM STRESS AND MITOCHONDRIAL AUTOPHAGY ON CARDIAC ARRHYTHMIAS IN FITNESS ENTHUSIASTS AND ATHLETES

Issue Volume 23, Number 93, 2023 Articles 
Miao Hao
First clinical college,Liaoning University of Traditional Chinese Medicine,Shenyang, 110032,China
Guanlin Yang
Key Laboratory of TCM Viscera Theory and Application of Ministry of Education, Liaoning University of Traditional Chinese Medicine,Liaoning University of Traditional Chinese Medicine,Shenyang,110032,China.
Dongyu Min
Traditional Chinese medicine experimental center,Liaoning Traditional Chinese Medicine Rehabilitation Center,Shenyang,110083,China
Ping Hou
Cardiology Department,the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine,Shenyang,110033,China

Abstract

Arrhythmias are a prevalent cardiovascular condition, frequently seen in athletes and fitness enthusiasts due to their high-intensity physical activities, which can complicate or be secondary to heart failure, myocardial hypoxia, ischemia, and in severe cases, lead to sudden death. In the context of athletic and fitness-oriented lifestyles, myocardial hypoxia—often a result of intense physical exertion—can significantly impact endoplasmic reticulum stress and mitochondrial autophagy. The endoplasmic reticulum (ER) plays a crucial role in cellular protein synthesis. Disruptions in ER homeostasis, due to various factors including strenuous physical activity, can lead to an accumulation of misfolded proteins in the ER, triggering ER stress. This stress has been identified in various diseases and is of particular interest in the athletic population, where the body's systems, including the heart, are often pushed to their limits. Furthermore, mitochondrial autophagy, a process vital for maintaining cellular health by degrading and recycling mitochondrial components, has been linked to arrhythmia. This connection is especially pertinent in athletes, as their hearts undergo considerable physiological stress and adaptation in response to ongoing physical demands. This study aims to explore the mechanisms by which myocardial hypoxia induces ER stress and mitochondrial autophagy, and how these processes contribute to the development of cardiac arrhythmias in athletes and fitness enthusiasts. By focusing on this specific group, the research seeks to provide a deeper understanding of the cardiac risks associated with high levels of physical activity and to inform preventative and therapeutic strategies tailored to this population.

Keywords: Myocardial hypoxia; Endoplasmic reticulum stress; Mitochondrial autophagy; Mrrhythmology
Download PDF

Periodicidad Trimestral/Quartely
Revista multidisciplinar de las Ciencias del Deporte
ISSN: 1577-0354
All journal articles are published in Spanish together with their corresponding translation into English

International Journal of Medicine and Science of Physical Activity and Sport 2025 . Powered by WordPress