Skip to content
International Journal of Medicine and Science of Physical Activity and Sport

International Journal of Medicine and Science of Physical Activity and Sport

REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FÍSICA Y EL DEPORTE

Menu
  • Home
  • Browse Issues
    • In Press
    • Current Issue
    • Past Issues
  • Information for Contributors
    • Subject Index
    • Subject Index – clasificación del consejo de europa
    • Subject Index – UNESCO Code
  • Login
  • Register
  • About
    • Editorial Staff
    • Indexation/Indexacion
    • INDICADORES DE CALIDAD / QUALITY
    • Contact us

Article View

APPLICATION OF COMPUTER VISION TECHNOLOGY IN ATHLETES CLINICAL MEDICAL RECORD IMAGE BIOMETRIC EXTRACTION

Issue Volume 24, Number 96, 2024 Articles 
Fu Shaoze
College of Physical Education, Xinjiang Normal University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
Gao Gang
College of Physical Education, Xinjiang Normal University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
Zhao Hongmei
College of Physical Education, Xinjiang Normal University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China

Abstract

With the development of clinical informatization technology, a large amount of data resources has been accumulated in the medical field, among which Athletes’ electronic medical records (EMRs) are one of the important data sources of clinical informatization and contain rich medical knowledge, how to obtain valuable biometric features from these data has become the basis of medical intelligence research. Therefore, this paper takes structured text as the entry point, and firstly, the research status of information extraction is elaborated. Moreover, in the work of e-medical biometrics recognition, medical text is added to the language model BERT for pre-training and fine-tuning, and a multi-head self-attention mechanism is introduced to incorporate a bidirectional LSTM model for feature extraction, and biometric features are extracted by using a stochastic conditional field as a classification constraint. This design bypasses the character-level image segmentation step for text line images, thus avoiding the overall accuracy degradation caused by the backward accumulation of errors in character segmentation. Finally, the experimental results show that the model can effectively accomplish the related biological feature extraction tasks.

Keywords: Biological Features; Electronic Medical Record Image; Automatic Extraction; Computer Vision
Download PDF

Periodicidad Trimestral/Quartely
Revista multidisciplinar de las Ciencias del Deporte
ISSN: 1577-0354
All journal articles are published in Spanish together with their corresponding translation into English

International Journal of Medicine and Science of Physical Activity and Sport 2025 . Powered by WordPress